Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-08-26 03:33:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Neural voice activity detection with high-gamma ECoG signal correlation structure using a chronically implanted brain-computer interface in an individual with ALS
Chronically implanted brain-computer interfaces (BCIs) for speech decoding hold promise for individuals with severe motor impairment. A key translational challenge to wider adoption is understanding and mitigating long-term neural signal variability. This study evaluated whether correlation-based features of electrocorticographic (ECoG) high-gamma signals (HG-C) provide greater long-term stability and robustness than high-gamma log-power (HGLP) features for neural voice activity detection (NVAD). We analyzed an open-source dataset from Angrick et al. [1] of an individual with amyotrophic lateral sclerosis performing a syllable repetition task. Long short-term memory (LSTM) models were trained on HGLP or HG-C features and evaluated across sessions separated from training by up to six months. Feature importance was estimated with permutation-based marginal effects analysis and robustness was tested by simulated electrode disconnections. HG-C achieved comparable to superior NVAD performance, with reduced temporal degradation (-8% vs. -23% F1 score decline). HG-C models leveraged distributed correlation structure and remained stable under both random and systematic electrode disconnections. These findings support HG-C as a candidate neural signal representation for speech BCIs which require long-term stability and robustness while maintaining ease of use for users and caregivers.


(Читать комментарии) (Добавить комментарий)