Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-04-12 03:49:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Connectome caricatures: removing large-amplitude co-activation patterns in resting-state fMRI emphasizes individual differences
High-amplitude co-activation patterns are sparsely present during resting-state fMRI but drive functional connectivity1-5. Further, they resemble task activation patterns and are well-studied3,5-10. However, little research has characterized the remaining majority of the resting-state signal. In this work, we introduced caricaturing--a method to project resting-state data to a subspace orthogonal to a manifold of co-activation patterns estimated from the task fMRI data. Projecting to this subspace removes linear combinations of these co-activation patterns from the resting-state data to create Caricatured connectomes. We used rich task data from the Human Connectome Project (HCP)11 and the UCLA Consortium for Neuropsychiatric Phenomics12 to construct a manifold of task co-activation patterns. Caricatured connectomes were created by projecting resting-state data from the HCP and the Yale Test-Retest13 datasets away from this manifold. Like caricatures, these connectomes emphasized individual differences by reducing between-individual similarity and increasing individual identification14. They also improved predictive modeling of brain-phenotype associations. As caricaturing removes group-relevant task variance, it is an initial attempt to remove task-like co-activations from rest. Therefore, our results suggest that there is a useful signal beyond the dominating co-activations that drive resting-state functional connectivity, which may better characterize the brain's intrinsic functional architecture.


(Читать комментарии) (Добавить комментарий)