крест и радуга
 
[Most Recent Entries] [Calendar View] [Friends View]

Friday, August 2nd, 2019

    Time Event
    2:17p
    Кажется, я это уже постил, но пусть будет ещё раз
    Вещественное грассманово многообразие Gr(2,7) можно реализовать стандартно как SO(p+q)/SO(p) x SO(q), а можно более экзотически -- как фактор группы G_2. В самом деле, все 2-плоскости сопряжены её действием. Каков стабилизатор? Он сохраняет векторное произведение любых двух ортонормированных векторов из этой плоскости -- то есть положительно ориентированный единичный вектор к этой плоскости, лежащий в порождённом ей ассоциативном подпространстве. На перпендикулярном к нему коассоциативном подпространстве стабилизатор действует унитарными эрмитовыми матрицами (сохраняя комплексную структуру, дающуюся векторным умножением на инвариантный вектор). Из исчисления размерности видно, что стабилизатор и есть вся группа U(2). При этом на оригинальной инвариантной плоскости он действует, выворачивая её на угол, равный аргументу определителя матрицы, которой он действует на коассоциативном подпространстве (или вдвое больший/меньший -- если так, то я обсчитался, и всё дальнейшее неверно).

    Стало быть, имеем Gr(2,7) = G_2 / U(2). Значит, над грассмановым многообразием Gr(2,7) имеется главное U(2)-расслоение. Метрика Картана-Киллинга даёт связность в этом главном расслоении. Итак, над грассманианом (2,7) имеется исключительное эрмитово расслоение ранга два с унитарной связностью.

    Если есть поверхность в семимерном евклидовом пространстве, то это расслоение можно оттянуть вдоль её гауссова отображения. Интересно, а если например это голоморфная кривая в S^6, будет ли оно голоморфным? а его определитель? Про это должен был бы Брайант писать, но я что-то не нашёл.

    Current Mood: tired
    Current Music: Казаки-некрасовцы -- По синёй-то море плывёт корабель

    << Previous Day 2019/08/02
    [Calendar]
    Next Day >>

About LJ.Rossia.org