AnandTech's Journal
 
[Most Recent Entries] [Calendar View]

Thursday, September 14th, 2017

    Time Event
    9:00a
    One Design, Two Products: The SanDisk Ultra 3D (1TB) and WD Blue 3D (1TB) SSD Reviews, with BiCS 3D NAND

    The first 3D NAND SSDs from Western Digital and its SanDisk subsidiary have arrived. The same mainstream SATA SSD with 3D TLC is being sold under two names, but either way it is a big step forward: SanDisk's 64-layer BiCS3 3D NAND enables faster performance and lower power consumption.

    11:45a
    TSMC Teams Up with ARM and Cadence to Build 7nm Data Center Test Chips in Q1 2018

    TSMC has announced plans to build its first test chips for data center applications using its 7 nm fabrication technology. The chip will use compute cores from ARM, a Cache Coherent Interconnect for Accelerators (CCIX), and IP from Cadence (a DDR4 memory controller, PCIe 3.0/4.0 links). Given the presence of the CCIX bus and PCIe 4.0 interconnects, the chip will be used to show the benefits of TSMC’s 7 nm process primarily for high-performance compute (HPC) applications. The IC will be taped out in early Q1 2018.

    The 7 nm test chips from TSMC will be built mainly to demonstrate capabilities of the semiconductor manufacturing technology for performance-demanding applications and find out more about peculiarities of the process in general. The chip will be based on ARMv8.2 compute cores featuring DynamIQ, as well as a CMN-600 interconnect bus for heterogeneous multi-core CPUs. ARM and TSMC do not disclose which cores they are going to use for the device - the Cortex A55 and A75 are natural suspects, but that’s a speculation at this point. The new chip will also have a DDR4 memory controller as well as PCI Express 3.0/4.0 links, CCIX bus and peripheral IP buses developed by Cadence. The CCIX bus will be used to connect the chip to Xilinx’s Virtex UltraScale+ FPGAs (made using a 16 nm manufacturing technology), so in addition to implementation of its cores using TSMC’s 7 nm fabrication process, ARM will also be able to test Cadence’s physical implementation of the CCIX bus for accelerators, which is important for future data center products.

    TSMC's 7 nm Test Chip at Glance
      Logic PHY
    Compute Cores ARM v8.2 with DynamIQ
    Internal Interconnect Bus ARM CMN-600
    CCIX Cadence
    DDR4 DRAM Controller ? Cadence
    PCI Express 3.0/4.0 Cadence
    Peripheral Buses I2C, SPI and QSPI by Cadence
    Verification and Implementation Tools Cadence

    As reported multiple times, TSMC’s 7 nm manufacturing process will be a “long” node and the foundry expects the majority of its large customers to use it. By contrast, the current 10 nm technology is aimed primarily at developers of smartphone SoCs. TSMC projects that its first-generation CLN 7FF fabrication technology, compared to its CLN16FF+, will enable its customers to reduce power consumption of their chip by 60% (at the same frequency and complexity), increase their clock rate by 30% (at the same power and transistor count) and shrink their die sizes by 70% at the same complexity. Sometime in 2019, TSMC plans to start making chips using its CLN7FF+ process technology with EUV for critical layers. TSMC claims that the CLN7FF+ will enable the company’s customers to further increase transistor density while improving other areas, such as yields and power consumption.

    TSMC does not disclose which of its 7 nm process technologies announced so far it is going to use for the test chip, but the use of EUV for test chips is something that cannot be excluded. For example, GlobalFoundries claims that they use EUV to accelerate production of test chips. On the other hand, since design rules for CLN7FF and CLN7FF+ are different, it is highly likely that TSMC conservatively uses the former for the test chip.

    TSMC’s CLN7FF process tech passed qualification in April and was expected to enter risk production in Q2 2017, according to TSMC’s management. The foundry expected 13 CLN7FF tape outs this year and it is projected that the fabrication technology would be used commercially starting from Q2 2018. Therefore, taping out the test vehicle using the first-gen DUV-only 7 nm process in Q1 2018 seems a bit late for early adopters who intend to ship their 7 nm SoCs in the second half of next year. Meanwhile, early adopters (read: Apple, Qualcomm, and some others) get access to new process technologies long before their development is completed and final PDKs (process development kits) are ready. Keeping in mind that the test chips feature a CCIX and PCIe 4.0 buses, it is clearly designed to show advantages of TSMC’s 7 nm process technologies for HPC applications. In fact, this is what TSMC says itself:

    “Artificial intelligence and deep learning will significantly impact industries including media, consumer electronics and healthcare,” said Dr. Cliff Hou, TSMC vice president, Research & Development/Design and Technology Platform. “TSMC’s most advanced 7nm FinFET process technology provides high performance and low power benefits that satisfy distinct product requirements for High-Performance Computing (HPC) applications targeting these markets.”

    Related Reading

    2:00p
    HP Updates Z8 Workstations: Up to 56 Cores, 3 TB RAM, 9 PCIe Slots, 1700W

    HP has updated its most powerful dual-processor Z8 workstation line with the latest components. The new systems contain up to two Intel Skylake-SP Xeon CPUs with up to 56 cores in total, up to 3 TB of DDR4 RAM, terabytes of storage as well as up to 9 PCIe slots along with optional TB3 and 10 GbE support via add-in cards. The HP Z8 workstation will be the pinnacle of HP’s computers for personal and professional use and its price in high-end configurations will surpass even the top-of-the-range gaming PCs.

    Historically, most high-end workstations relied on server platforms to support more than one CPU and thus offer higher performance than any consumer desktop. The emergence of dual-core and then multi-core CPUs a little more a decade ago changed the workstation market quite quickly and significantly. In a world with quad-core CPUs, 4-way workstations did not make a lot of sense for 99% of the users and therefore they quickly became extinct. Moreover, by now, even 2-way workstations became rare. Today, the vast majority of workstations use one multi-core CPU that provides enough compute horsepower for professional workloads, whereas GPU-based accelerators are used for tasks like simulations. Nonetheless, there are still users who need maximum x86 performance and who therefore require 2-way workstations — and the HP Z8 is aimed precisely at such users. While the Intel Xeon Scalable processors with extreme core count were developed primarily with servers in mind, the Z8 is a system that people put on their desks and therefore it has a number of specific requirements regarding noise levels, features, security, compatibility with components and so on.

    One of the key components of all PCs is its microprocessor. When it comes to the HP Z8, it is based on up to two Intel Xeon Platinum 8180 with 28 cores and 205 W TDP each, which means that the system has to remove 410 W of thermal energy only from CPUs, and this requirement had a significant impact on the design of the whole system. The company did not want to use a liquid cooling system, so it had to design an air cooling solution capable of cooling down two extremely hot CPUs as well as up to 24 DDR4-2666 memory modules. Each processor has its own radiator equipped with a high-pressure air fan (which speed is regulated by BIOS in accordance with system temperature monitored by numerous sensors). In addition, the system has multiple airflow vents on the front and on the top as well as one fan that exhausts hot air on the back. According to HP, such a chassis architecture ensures that the second CPU does not re-use warm air from the first one, but since they are located in close proximity, one will always affect another with its heat. Finally, the system has additional fans that cool down other components and produce more airflow within the chassis.

    Speaking of other components, the HP Z8 supports plenty of them — whatever one might want. First off, the system has four PCIe 3.0 x16 slots for graphics cards or SSDs (up to AMD Radeon Pro, NVIDIA Quadro P100 or GP100, up to 4 TB HP Z Turbo Drive Quad Pro, etc.) three PCIe 3.0 x8 (two are non-hot swap) slots for SSDs and two PCIe 3.0 x4 slots. In addition to PCIe-based storage, the Z8 also features four 2.5”/3.5” bays for SATA/SAS SSDs or HDDs as well as two external 5.25” bays that can also accommodate drive form-factor storage devices using appropriate adapters. Those who need it, HP may also install an SD card reader as well as a slim DVD or Blu-ray ODD.

    When it comes to connectivity, the HP Z8 has all the bases covered. By default, the system supports two GbE connectors (powered by Intel controllers), an 802.11ac Wi-Fi + Bluetooth module (Intel Wireless-AC 8265 controller), two USB 3.1 Type-C ports and two USB 3.1 Type-A ports on the front, four USB 3.1 Type-A ports on the back, multi-channel audio connectors (a Realtek HD ALC221 controller) on the back, a TRRS audio connector on the front and so on. Meanwhile, owners can optionally order to install two 10 GbE controllers, a Thunderbolt 3-supporting add-in-card and a variety of custom components for various industries and workloads (an external audio solution for a 5.25” bay, for example).

    Since many businesses and enterprises require robust security for all of their machines, the HP takes everything seriously and ships the Z8 with a whole set of security features that it calls HP SureStart. The system features secure authentication, full volume encryption, TPM 2.0, has a Kensington lock and so on.

    All the CPUs, GPUs, SSDs and other components require a lot of power and HP Z8 has plenty of it. The manufacturer offers 1125 W, 1450 W or 1700 W internal PSUs with up to 90 % efficiency. The PSU is located in a compartment behind the motherboard, so chances are that HP uses proprietary units.

    General Specifications of the HP Z8 2017
      HP Z8 G4
    CPU Family Intel Xeon Scalable processor
    Models Xeon Platinum 8180 (2.5GHz/3.8GHz, 38.5MB cache, 28 cores)
    Xeon Platinum 8160 (2.1 GHz/3.7 GHz, 33 MB cache, 24 cores)
    Xeon Gold 6152 (2.1 GHz/3.7 GHz, 30.25 MB cache, 22 cores)
    Xeon Gold 6154 (3 GHz/3.7 GHz, 24.75 MB cache, 18 cores)
    Xeon Gold 6148 (2.4 GHz/3.7 GHz, 27.5 MB cache, 20 cores)
    Xeon Gold 6142 (2.6 GHz/3.7 GHz, 22 MB cache, 16 cores)
    Xeon Gold 6136 (3 GHz/3.7 GHz, 24.75 MB cache, 12 cores)
    Xeon Gold 6140 (2.3 GHz/3.7 GHz, 24.75 MB cache, 18 cores)
    Xeon Gold 6134 (3.2 GHz/3.7 GHz, 24.75 MB cache, 8 cores)
    Xeon Gold 6132 (2.6 GHz/3.7 GHz, 19.25 MB cache, 14 cores)
    Xeon Gold 6130 (2.1 GHz/3.7 GHz, 22 MB cache, 16 cores)
    Xeon Gold 6128 (3.4 GHz/3.7 GHz, 19.25 MB cache, 6 cores)
    Xeon Gold 5120 (2.2 GHz/3.2 GHz, 19.25 MB cache, 14 cores)
    Xeon Gold 5118 (2.3 GHz/3.2 GHz, 16.5 MB cache, 12 cores)
    Xeon Gold 5122 (3.6 GHz/3.7 GHz, 16.5 MB cache, 4 cores)
    Xeon Silver 4116 (2.1 GHz/3 GHz, 16.5 MB cache, 12 cores)
    Xeon Silver 4114 (2.2 GHz/3 GHz, 13.75 MB cache, 10 cores)
    Xeon Silver 4112 (2.6 GHz/3 GHz, 8.25 MB cache, 4 cores)
    Xeon Silver 4108 (1.8 GHz/3 GHz, 11 MB cache, 8 cores)
    Xeon Bronze 3106 (1.7 GHz, 11 MB cache, 8 cores)
    Xeon Bronze 3104 (1.7 GHz, 8.25 MB cache, 6 cores)
    Graphics Entry NVIDIA Quadro P400 (2 GB GDDR5)
    NVIDIA Quadro P600 (2 GB GDDR5)
    AMD FirePro W2100 (2 GB DDR3)
    Mid-Range NVIDIA Quadro P1000 (4 GB GDDR5)
    NVIDIA Quadro P2000 (5 GB GDDR5)
    AMD Radeon Pro WX 3100 (4 GB GDDR5)
    AMD Radeon Pro WX 4100 (4 GB GDDR5)
    High-End NVIDIA Quadro P4000 (8 GB GDDR5)
    AMD Radeon Pro WX 7100 Graphics (8 GB GDDR5)
    Ultra High-End NVIDIA Quadro P5000 (16 GB GDDR5X)
    NVIDIA Quadro P6000 (24 GB GDDR5X)
    AMD Radeon Pro WX 9100 Graphics (16 GB HBM2)
    NVIDIA Quadro GP100 (16 GB HBM2)
    RAM 24 DDR4 DIMMs, up to 1.5 TB of DDR4-2666
    (3TB options in H1 2018, when M CPUs are available)
    Storage Bays 4 × 2.5"/3.5", 2 × 5.25", 1 × slim 5.25" for ODDs
    Options 300 GB SAS (15000 rpm)
    500 GB up to 2 TB SATA (7200 rpm)
    500 GB SATA SED (7200 rpm)
    1 TB up to 4 TB 7200 rpm SATA Enterprise
    256 GB up to 2 TB SATA SSD
    256 GB up to 512 GB SATA SED Opal 2 SSD
    240 GB up to 480 GB SATA Enterprise SSD
    256 GB up to 1 TB HP Z Turbo Drive PCIe SSD M.2
    256 GB up to 512 GB HP Z Turbo Drive PCIe SED SSD M.2
    256 GB up to 4 TB HP Z Turbo Drive Quad Pro PCIe SSD
    HP Slim DVD-ROM
    HP Slim Blu-ray Writer
    HP Slim DVD-Writer
    Networking GbE Integrated Intel I219-LM PCIe GbE
    Integrated Intel X722 PCIe GbE
    Intel I350-T2 dual-port GbE NIC
    Intel I350-T4 dual-port GbE NIC
    Intel I210-T1 PCIe GbE
    10 GbE Intel X550-T2 dual-port GbE NIC
    Intel X710-DA2 dual-port GbE NIC
    Intel 10 GbE SFP+ SR transceiver
    HP dual-port 10GBase-T NIC
    Wireless Intel Dual Band Wireless-AC 8265 802.11a/b/g/n/ac (2x2) Wi-Fi and Bluetooth 4.2 Combo, non-vPro
    PCIe 3.0
    Expansion Slots
    x4 2
    x8 3
    x16 4
    Notes 1 PCIe x8 has rear bulkhead access and 2 PCIe x8 are internal access only. Slot 1: Transforms to PCIe x8 when 2nd CPU is installed.
    Slots 3 and 6: are available only when 2nd processor is installed.
    PCIe x16 - Available only when 2nd processor is installed
    USB 3.1 2 × Type-A, 2 × Type-C
    3.0 4 × Type-A
    2.0 unknown
    Thunderbolt Optional Thunderbolt 3 add-in-card
    Card Reader 4-in-1 card reader
    PSUs 1125 W, 1450 W, 1700 W
    Other I/O Audio connectors, Realtek HD ALC221 controller
    Input Devices HP Wireless Business Slim Keyboard and Mouse Combo
    HP USB Business Slim Keyboard
    USB Premium wired keyboard
    USB Smart Card (CCID) keyboard
    3Dconnexion CADMouse
    HP USB Optical Mouse
    HP PS/2 Mouse
    HP USB Hardened Mouse
    Dimensions 8.5 × 21.7 × 17.5 in
    21.59 × 55.12 × 44.45 cm
    Weight Starting at 49.4 lb
    Starting at 22.4 kg
    Operating System Windows 10 Pro for Workstations
    HP Installer Kit for Linux
    HP Red Hat Enterprise Linux
    Price Starting at $2,439

    Now, time to talk about availability and pricing. HP intends to ship the HP Z8 workstations in October. An entry-level model with one CPU, a basic GPU and storage will cost $2,439. Meanwhile, once the system is equipped with two Xeon Platinum 8180 CPUs, NVIDIA Quadro P100/GP100 graphics, multiple PCIe SSDs, 3 TB of DDR4 memory, several 12 TB HDDs and various advanced I/O capabilities (TB3, 10 GbE, etc.), its price will easily hit tens of thousands of dollars.

    It's normally at this point that a vendor such as HP states that the high-end models are likely to be sold under B2B contracts, where per-unit costs are not as severe. One OEM has told us that only 5% of sales of their high-end workstations come through direct sales for onlike pricing.

    Related Reading

    4:00p
    Dell’s Visor Available for Pre-Order: A Mixed Reality Headset, Ships in Mid-October

    Dell has begun to take pre-orders on its Visor headset for Windows Mixed Reality applications. The company will start shipments of the device in mid-October, just in time for Microsoft’s Windows 10 Creators Update that arrives on October 17 and ahead of the holiday season.

    Starting from September 14, Dell’s Visor WMR headset is available for pre-order from Dell.com/Visor in the U.S. and from PCWorld in the U.K. The headset itself is priced at $349.99, the controller kit costs $99.99 and a Visor with controllers is priced at $449.99. In the U.K., the whole kit is available for pre-order at £429.99. In order to play non-controller based AR/VR games on the Visor, users will also have to get an Xbox One controller. Dell will start to ship its Visor product on October 17, 2017. In addition, the company plans to make the device available in BestBuy stores and directly from Microsoft (online and offline).

    Dell’s Visor AR/VR headset complies with Microsoft’s requirements for headsets compatible with the Windows Mixed Reality platform: it connects to Windows 10-based PCs using HDMI and USB cables, it features two 1440×1440@90 Hz LCD panels (for a total resolution of 2880×1440) and two cameras to capture the outside world. While ergonomics and industrial designs of WMR-compliant headsets from Dell, Acer, ASUS and Lenovo are different, internally they end up being very similar.

    The shipments date of the Dell Visor coincides with the launch date of Microsoft’s Windows 10 Creators Update, which will bring support for Windows Mixed Reality headsets to end users. That said it is highly likely that other makers of WMR gear will try to ship their products around the time of the official launch of the platform. In the meantime, Dell seems to be the first with pre-orders.

    Related Reading

    << Previous Day 2017/09/14
    [Calendar]
    Next Day >>

AnandTech   About LJ.Rossia.org