Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-01-15 08:34:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Robustness of working memory to prefrontal cortex microstimulation
Delay period activity in the dorso-lateral prefrontal cortex (dlPFC) has been linked to the maintenance and control of sensory information in working memory. The stability of working memory related signals found in such delay period activity is believed to support robust memory-guided behavior during sensory perturbations, such as distractors. Here, we directly probed dlPFC's delay period activity with a diverse set of activity perturbations, and measured their consequences on neural activity and behavior. We applied patterned microstimulation to the dlPFC of monkeys implanted with multi-electrode arrays by electrically stimulating different electrodes in the array while the monkeys performed a memory guided saccade task. We found that the microstimulation perturbations affected spatial working memory-related signals in individual dlPFC neurons. However, task performance remained largely unaffected. These apparently contradictory observations could be understood by examining different dimensions of the dlPFC population activity. In dimensions where working memory related signals naturally evolved over time, microstimulation impacted neural activity. In contrast, in dimensions containing working memory related signals that were stable over time, microstimulation minimally impacted neural activity. This dissociation explained how working memory-related information could be stably maintained in dlPFC despite the activity changes induced by microstimulation. Thus, working memory processes are robust to a variety of activity perturbations in the dlPFC.


(Читать комментарии) (Добавить комментарий)