|

|

Impact of meningioma and glioma on whole-brain dynamics
Brain tumors, particularly meningiomas and gliomas, can profoundly affect neural function, yet their impact on brain dynamics remains incompletely understood. This study investigates alterations in normal brain function among meningioma and glioma patients by assessing dynamical complexity through the Intrinsic Ignition Framework. We analyzed resting-state fMRI data from 34 participants to quantify brain dynamics using intrinsic ignition and metastability metrics. Our results revealed distinct patterns of disruption: glioma patients showed significant reductions in both metrics compared to controls, indicating widespread network disturbances. In contrast, meningioma patients exhibited significant changes predominantly in regions with substantial tumor involvement. Resting-state network analysis demonstrated strong metastability and metastability/ignition correlations between regions in controls, which were slightly weakened in meningioma patients and severely disrupted in glioma patients. These findings highlight the differential impacts of gliomas and meningiomas on brain function, offering insights into their distinct pathophysiological mechanisms. Furthermore, these results show that brain dynamics metrics can be effective biomarkers for identifying disruptions in brain information transmission caused by tumors.
(Читать комментарии) (Добавить комментарий)
|
|