bioRxiv Subject Collection: Neuroscience's Journal
[Most Recent Entries]
[Calendar View]
Saturday, June 8th, 2024
Time |
Event |
3:49a |
Characterization of Bilateral Reaching Development Using Augmented Reality Games
Bilateral coordination is commonly impaired in neurodevelopmental conditions including cerebral palsy, developmental coordination disorder, and autism spectrum disorder. However, we lack objective clinical assessments that can quantify bilateral coordination in a clinically feasible manner and determine age-based norms to identify impairments. The objective of this study was to use augmented reality and computer vision to characterize bilateral reaching abilities in typically developing children. Typically developing children (n=133) ages 6-17 years completed symmetric and asymmetric bilateral reaching tasks in an augmented reality game environment. We analyzed the number of target pairs they could reach in 50 seconds as well as the time lag between their hands reaching the targets. We found that performance on both tasks developed in parallel, with development slowing but not plateauing after age 12. Children performed better on the symmetric task than asymmetric, both in targets reached and with shorter hand lags. Variability between children in hand lag decreased with age. We also found gender differences with females outperforming males, which were most pronounced in the 10-11 year olds. Overall, this study demonstrates parallel development through childhood and adolescence of symmetric and asymmetric reaching abilities. Furthermore, it demonstrates the ability to quantify bilateral coordination using computer vision and augmented reality, which can be applied to assess clinical populations. | 1:49p |
Eyes on the past: Gaze stability differs between temporal expectation and temporal attention
Temporal expectation and temporal attention distinctly improve performance and gaze stability, and interact at the behavioral and neural levels. Foreperiod -the interval between the preparatory signal and stimulus onset- facilitates temporal expectation. Preceding foreperiod -the foreperiod in the previous trial- modulates expectation at behavioral and oculomotor levels. Here, we investigated whether preceding foreperiod guides temporal attention. Regardless of the preceding foreperiod, temporal attention improved performance, particularly at early moments,and consistently accelerated gaze stability onset and offset by shifting microsaccade timing. However, only with preceding expected foreperiods, attention inhibited microsaccade rates. Moreover, preceding late foreperiods weakened expectation effects on microsaccade rates, but such a weakening was overridden by attention. Altogether, these findings reveal that the oculomotor system's flexibility does not translate to performance, and suggest that although selection history can be utilized as one of the sources of expectation in subsequent trials, it does not necessarily determine, strengthen, or guide attentional deployment. | 1:49p |
Arid1b haploinsufficiency in cortical inhibitory interneurons causes cell-type-dependent changes in cellular and synaptic development
Autism spectrum disorder (ASD) presents with diverse cognitive and behavioral abnormalities beginning during early development. Although the neural circuit mechanisms remain unclear, recent work suggests pathology in cortical inhibitory interneurons (INs) plays a crucial role. However, we lack fundamental information regarding changes in the physiology of synapses to and from INs in ASD. Here, we used transgenic mice to conditionally knockout one copy of the high confidence ASD risk gene Arid1b from the progenitors of parvalbumin-expressing fast-spiking (PV-FS) INs and somatostatin-expressing non-fast-spiking (SST-NFS) INs. In brain slices, we performed paired whole-cell recordings between INs and excitatory projection neurons (PNs) to investigate changes in synaptic physiology. In neonates, we found reduced synaptic input to INs but not PNs, with a concomitant reduction in the frequency of spontaneous network events, which are driven by INs in immature circuits. In mature mice, we found a reduction in the number of PV-FS INs in cortical layers 2/3 and 5. However, changes in PV-FS IN synaptic physiology were cortical layer and PN cell-type dependent. In layer 5, synapses from PV-FS INs to subcortical-projecting PNs were weakened. In contrast, in layer 2/3, synapses to and from PV-FS INs and corticocortical-projecting PNs were strengthened, leading to enhanced feedforward inhibition of input from layer 4. Finally, we found a novel synaptic deficit among SST-NFS INs, in which excitatory synapses from layer 2/3 PNs failed to facilitate. Our data highlight that changes in unitary synaptic dynamics among INs in ASD depend on neuronal cell-type. | 1:49p |
Ventral tegmental area interneurons revisited: GABA and glutamate projection neurons make local synapses
The ventral tegmental area (VTA) contains projection neurons that release the neurotransmitters dopamine, GABA, and/or glutamate from distal synapses. VTA also contains GABA neurons that synapse locally on to VTA dopamine neurons, synapses widely credited to a population of so-called VTA interneurons. Interneurons in cortex, striatum, and elsewhere have well-defined morphological features, physiological properties, and molecular markers, but such features have not been clearly described in VTA. Indeed, there is scant evidence that local and distal synapses originate from separate populations of VTA GABA neurons. In this study we tested whether several markers expressed in non-dopamine VTA neurons are selective markers of interneurons, defined as neurons that synapse locally but not distally. Challenging previous assumptions, we found that VTA neurons genetically defined by expression of parvalbumin, somatostatin, neurotensin, or mu-opioid receptor project to known VTA targets including nucleus accumbens, ventral pallidum, lateral habenula, and prefrontal cortex. Moreover, we provide evidence that VTA GABA and glutamate projection neurons make functional inhibitory or excitatory synapses locally within VTA. These findings suggest that local collaterals of VTA projection neurons could mediate functions prior attributed to VTA interneurons. This study underscores the need for a refined understanding of VTA connectivity to explain how heterogeneous VTA circuits mediate diverse functions related to reward, motivation, or addiction. | 4:34p |
Neurogliaform Cells Exhibit Laminar-specific Responses in the Visual Cortex and Modulate Behavioral State-dependent Cortical Activity
Neurogliaform cells are a distinct type of GABAergic cortical interneurons known for their volume transmission output property. However, their activity and function within cortical circuits remain unclear. Here, we developed two genetic tools to target these neurons and examine their function in the primary visual cortex. We found that the spontaneous activity of neurogliaform cells positively correlated with locomotion. Silencing these neurons increased spontaneous activity during locomotion and impaired visual responses in L2/3 pyramidal neurons. Furthermore, the contrast-dependent visual response of neurogliaform cells varies with their laminar location and is constrained by their morphology and input connectivity. These findings demonstrate the importance of neurogliaform cells in regulating cortical behavioral state-dependent spontaneous activity and indicate that their functional engagement during visual stimuli is influenced by their laminar positioning and connectivity. |
|