План изучения математики Я думал, что напишу короткий текст-набросок, но как обычно накатал гигантскую простыню. Здесь фактически объединено три темы: примерная программа по математике для среднего школьника (гуманитария или инженера, но не математика), методические рекомендации по тому как выбирать книги и темы для чтения, как относиться к задачам и доказательствам, а так же набор задач для самостоятельной проверки собственных знаний. Если вам интересны лишь отдельные эти темы, то вы можете проматывать до соответствующего параграфа, поскольку я отлично понимаю, что осилить весь текст целиком — сложно и большинству скучно. В то же время я убеждён, что именно отдельные фрагменты текста могут быть полезны многим читателям.
Мне постоянно, практически каждый день, присылают один и тот же вопрос: «Как изучить математику с самого начала?». Проблема обычно у всех одна и та же: в школе не учил, в институте не понял, наверстать не получается. Либо в институте даже нормально учился, был уверен, что его хорошо и правильно учат мудрые профессора в каком-нибудь МИФИ или Бауманке, решал интегралы и пределы, но как только после института столкнулся с реальной математикой в какой-то не совсем тривиальной задаче, понял наконец, что учили не тому и не так.
Я много писал о том, что у нас математике правильно почти нигде не учат, многие воодушевились, и решили математику таки изучать, попутно задавая мне вопросы. И тут выясняется, что как её учить не понятно: есть много хороших университетских учебников, но нет ничего хорошего по начальному курсу. Я эту проблему многократно обозначал, но не наметил никаких ориентиров как её преодолеть желающим. Начал писать свой учебник, но он получился слишком сложным и теоретическим (вплоть до того, что за сотню с лишним страниц я даже не успел ввести понятие натурального числа).
В этой заметке я постараюсь дать максимально подробное изложение того, как изучать математику с нуля так, чтобы потом можно было браться за университетские учебники, а заодно изложу в каких направлениях вообще стоит двигаться и в каких случаях.
Свой план изучения математики я разбиваю на подпункты, к каждому из которых прилагается три задачи, которые вы должны уметь решать. Это не совсем простые задачи, но если вы понимаете материал, то вы должны справиться. Это так же может быть хорошим тестом для обучающихся в технических ВУЗах — если вы успешно учитесь, но не можете решить хотя бы половины приведенных задач, значит вы однозначно учитесь не тому.
Источники
По школьному курсу я не знаю ни одной хорошей книги. Есть отдельные хорошие брошюры МЦНМО, ориентированные главным образом для 57-ой школы и подобных заведений, но они часто либо совсем узконаправленные, либо сложные для неподготовленного. Почитать их может быть интересно, они все составляются очень хорошими грамотными людьми, но надо понимать, что ориентированы они на тех, из кого есть шанс вырастить математика-теоретика, и у кого есть на это время. Если вы студент престижного инженерного ВУЗа и вынуждены каждый день решать интегралы, пределы, дифуры и урматы, либо вообще работаете по 8 часов в день, у вас скорее всего не будет времени в них углубляться. То есть путь чтения МЦНМО-шных книг хоть и правилен с методической точки зрения, но скорее всего не подойдёт большинству читателей.
Наверное самый быстрый и правильный путь наверстать школьную программу — это иметь перед глазами ориентировочную адекватную программу того что надо учить и какие области необходимо затронуть. Придерживаясь такой программы, необходимо искать информацию по каждой отдельной теме в Интернете. Часто хорошим источником становится Википедия, но далеко не всегда. Тогда может помочь Гугл, какие-то учебники либо ресурсы типа math.stackexchange.com. Такую примерно программу я сейчас и предлагаю читателю. Ниже излагается краткий перечень того, что необходимо изучить, в каком порядке и в каком виде, а так же что из чего выводится. По замыслу это должно стать хорошим ориентиром для тех, кто хочет самостоятельно наверстать математику, которую он плохо понимает.
Обозначу сразу, что моя программа ориентирована на прикладников, а не на теоретиков. Это накладывает очень большой отпечаток на спектр тем, определения и рассматриваемые теоремы, включая их общность. Какие-то понятия могут профессиональным математикам показаться определенными не правильно, но я осознанно стараюсь в этой программе идти по пути наименьшего сопротивления. Так же я тут не составляю идеальной математической программы — то что я пишу ниже сильно отражает существующий школьный курс, который сам по себе можно раскритиковать. Я это делаю осознанно, чтобы учащемуся было легче ориентироваться и он мог быстрее усваивать материал. Из отклонений от школьной программы я допускаю лишь минимальные нововведения (то что совсем уж стыдно не знать) и выкидываю ненужное главным образом в виде геометрии.
Не смотря на прикладную ориентированность, впрочем, возможно что даже интересующемуся теорией окажется вначале полезно пойти по пути изучения именно этой программы, а потом переходить к более абстрактным темам.
1. Английский
Один из самых важных навыков, которым должен владеть человек, изучающий математику (да и почти что угодно) — это английский язык. Как только вы становитесь способны читать на английском, множество источников для изучения материала у вас расширяется многократно. При том, что есть много хороших книг на русском, на английском их несравнимо больше даже по школьной программе. Многие теоретические темы, даже самые базовые, на русском языке вообще никогда и никем не излагались, либо излагались крайне неудачно. В той же Википедии аналогичные статьи зачастую оказывается куда лучше на английском языке, нежели на русском. Бывают и обратные примеры, но редко. Даже многие очень адекватные российские ученые пишут свои учебные материалы сразу на английском, русский язык полностью игнорируя, поскольку в России для этих материалов будет крайне малая аудитория.
Так что первым делом, как только вы прочитаете этот текст — начинайте изучать английский язык. Потратив пару лет на то, чтобы уметь бегло и без напряжения читать английский текст и общаться на английском, вы потом сэкономите себе кучу времени, пользуясь куда более качественными источниками при изучении любой другой области, в том числе и математики.
Стоит так же отметить в целом гораздо более хороший научный уровень англоязычной аудитории. В России вам очень мало людей смогут дать адекватный совет по той или иной области, в отличие от англоязычных форумов. На русском языке вы так же не сможете адекватно оценить современное положение вещей в науке, 99% инженеров и кандидатов наук вас скорее всего будут пичкать рекомендациями считать больше интегралов по задачнику Демидовича и читать про то как считаются определители матриц. Это самые бредовые рекомендации, которые можно дать, но понимают это единицы.
Для изучения английского лучше идти на групповые занятия на курсы. Так же полезно читать на английском (есть много адаптированных книг), пытаться переводить интересные вам тексты, искать собеседников-иностранцев для переписки (тут помогут сайты типа livemocha.com и специализированные форумы), могут помочь самоучители типа Мерфи (English Grammar in Use, Eglish Phrasal Verbs in Use и подобные), полезны бесплатные онлайн-курсы типа study.ru.
Даже если вам очень тяжело даётся иностранный язык, вы всё равно должны учить английский. Это действительно самая важная рекомендация, которую в принципе можно дать для изучения любой околотехнической науки и математики в том числе.
Начинайте изучать английский прямо сегодня.
2. Натуральные числа
Начать именно математику логично с арифметики натуральных чисел (это числа 0, 1, 2, 3 и так далее). Вы должны знать основные операции над натуральными числами и их взаимосвязь: сравнение чисел на больше-меньше, сложение, вычитание, умножение, деление с остатком, возведение в степень.
При изучении всех этих тем желательно иметь в голове три интерпретации натурального числа (здесь в порядке убывания важности):
Комбинаторная интерпретация. Число обозначает количество неких объектов в каком-то наборе. Если x>y, то это значит, что в наборе x больше объектов. Сложение чисел — это объединение двух наборов объектов (у одного человека 100 рублей, у другого 200 — сумма, это когда они скинулись). Умножение чисел — это способы составить пары. Например, у нас x мужиков и y баб. Умножение xy — это количество способов выбрать из них одну пару мужик-баба. Возведение в степень xy — это количество способов составить из алфавита, содержащего x символов, слова длины y. Именно комбинаторная интерпретация наиболее часто используется в приложениях математики, она же наиболее удобна при доказательстве арифметических свойств, она же наиболее близка к современному теоретико-множественному определению натуральных чисел.
Геометрическая интерпретация. Натуральное число — это отрезок на линейке. Сравнение чисел — сравнение отрезков по длине. Сложение чисел — склеивание двух отрезков. Умножение — площадь квадрата с заданными сторонами. Возведение в степень элементарной геометрической интерпретации не имеет (имеет интерпретацию в многомерной геометрии, но на начальном этапе об этом не стоит думать).
Индуктивная интерпретация. Натуральные числа получаются одно из другого, то есть есть выделенное число «ноль», и так же есть куча чисел, которые получаются прибавлением единицы. Другими словами для каждого числа определено число, следующее за данным. Эта интерпретация наиболее близка к тому, что рассказывают в начальной школе о том, что чтобы умножить x на y нужно посчитать сумму
, где сложение происходит y раз. Аналогично возведение в степень — это многократное умножение.
В каких-то ситуациях полезна одна интерпретация, в каких-то другая. Например, свойства степени довольно легко выводятся из индуктивной интерпретации, однако в ней совершенно непонятно почему
, однако это же свойство элементарно видно в интерпретации геометрической или комбинаторной.
Весьма полезно, хотя и опционально, на начальном этапе изучить подробно алгоритмы операций в столбик (самое важное — деление в столбик), свойств делимости, алгоритм Евклида для нахождения наибольших общих делителей и вытекающую из него основную теорему арифметики. В прикладной математике эти вещи нужны довольно редко (если только вы не занимаетесь криптографией), хотя иногда встречаются. Алгоритм деления в столбик важен для понимания аналогичного алгоритма деления в столбик полиномов, который в свою очередь может быть полезен при решении уравнений и интегралов, хотя сами эти вещи тоже весьма необязательны — подавляющее большинство студентов оканчивают технические ВУЗы и решают интегралы не умея делить полиномы.
Если вы тяготеете не к прикладной математике, а к теоретической, то изложенное в прошлом параграфе для вас обязательно. Если математика вам нужна только с прикладной точки зрения, то вам достаточно знать формулировку основной теоремы арифметики, чтобы хотя бы на базовом уровне понимать важную роль простых чисел как строительных кирпичиков натуральных чисел. После основной теоремы арифметики совершенно обязательным для всех является доказательство теоремы Евклида — она отвечает на вопрос о том, сколько всего существует простых чисел. Это одно из самых простых и одновременно с тем сильных доказательств. Пропустить его никак нельзя.
Для людей, занимающихся информационными технологиями, равно как и для математиков-теоретиков, будет полезно изучить каким образом строится позиционная система счисления с произвольным основанием.
В качестве проверки того, насколько вы хорошо знаете арифметику натуральных чисел, попробуйте самостоятельно выполнить следующие не сложные упражнения:
а) Докажите лемму Евклида: если p — простое число, которое делит xy, то оно делит хотя бы одно из x и y (считайте эти числа взаимопростыми). Докажите это не пользуясь основной теоремой арифметики (поскольку она сама вытекает из леммы Евклида; при доказательстве полезно использовать следствие из алгоритма Евклида).
б) Докажите, что для того, чтобы число делилось на 3, надо чтобы сумма его цифр в десятичной системе счисления делилась на 3. Аналогично объясните как проверить делимость на 9.
в) Объясните, каким образом можно возвести число 123 в 64-ю степень, используя только 3 операции умножения.
3. Целые, рациональные, вещественные, комплексные числа
Их следует изучать именно в этом порядке. Возведение в соответствующие степени пока следует отложить.
Опять же, важно рассмотреть несколько интерпретаций. Для целых чисел вы можете рассматривать отрицательные числа как отрицательный денежный баланс (долги, недостаток средств), геометрически как продолжение линейки натуральных чисел в обратную сторону (сложение и умножение будет определяться как движение по этой линейке), либо как чисто формальную конструкцию: целые числа — это расширение натуральных чисел такое, что для каждого натурального x найдется новое число -x, обладающее свойством
. С этой точки зрения целые числа — это такое расширение натуральных чисел, чтобы всегда было возможно произвести операцию вычитания (для натуральных чисел
имеет смысл лишь тогда, когда
).
При рассмотрении целых чисел хорошо обратить внимание на операцию модуля числа, он же абсолютное значение (чуть позже, после знакомства с тригонометрией и геометрией, проделать то же самое для модуля комплексного числа). Вы должны понимать откуда берутся формулы типа
.
Рациональные числа опять же можно рассматривать геометрически (доля целого отрезка), количественно (куски целого) и формально: как числа получающиеся из целых добавлением чисел вида 1/x для каждого ненулевого целого x, а так же всех их возможных произведений (из обычных свойств произведения будет легко вывести правила сложения дробей). Последний способ наиболее удобен для определения арифметических свойств. В этом случае рациональные числа — это такое расширение целых чисел, чтобы всегда было возможно выполнить операцию деления без остатка.
Отсюда полезно понять каким образом устроены десятичные дроби, затем вывести такую простую теорему: десятичное представление любого рационального числа либо конечно, либо периодично.
Для перехода к вещественным числам можно рассмотреть функцию квадратного корня и понять как его можно вычислить последовательным перебором. Затем показать, что корень из двойки не может быть рациональным, хотя вы можете его сколь угодно точно приближать поразрядно. Это даст основания для рассмотрения бесконечных непериодических десятичных дробей, которые и называются иррациональными числами. С точки зрения современной математики это самое неказистое и сложное определение, но оно позволяет понять что такое вещественное число не обладая никакой специальной подготовкой. Подробно доказывать арифметические свойства тут уже совершенно не нужно — знание как проводятся операции в столбик даст вам хорошую интуицию, а строгие формальные выкладки вы сможете понять позже, если будете копать в сторону теоретической математики.
С вещественными числами очень важен вычислительный аспект. Дело в том, что никакие счетные устройства, калькуляторы-компьютеры и прочие, не умеют работать с вещественными числами — только с рациональными, в силу того, что вещественное число требует для своего определения бесконечное число цифр. Таким образом всегда при вычислениях вы будете иметь некоторую погрешность. Будет полезно разобраться с тем, как увеличивается погрешность при выполнении простейших арифметических операций.
Про комплексные числа важно лишь знать, что
и вывести отсюда формулы сложения, умножения и деления (в учебниках можно встретить много разных определений, чаще всего как пары вещественных чисел, но на начальном этапе самым корректным будет именно определение через формальную мнимую единицу). Это чисто формальная конструкция, которая должна стать понятнее, если вы справитесь с формальным определением отрицательных и рациональных чисел. Не пытайтесь найти комплексным числам физической или геометрической интерпретации — на данном этапе это совершенно ненужно и даже вредно.
Бытует мнение, что комплексные числа нужны только математикам, а простым инженерам они нужны не очень-то. Я спешу вас расстроить: без комплексных чисел не очень понятно как решать многие виды интегралов, рядов, дифференциальных уравнений. В теории вероятностей (крайне важная наука для анализа данных, а соответственно и для всяких там менеджеров, социологов и маркетологов) комплексные числа используются при определении характеристической функции, которая делает элементарными многие факты и вычисления в теории вероятностей. В современной геометрии комплексные векторные пространства позволяют эффективно исследовать свойства вещественной евклидовой геометрии и т. п. Можно было бы обойтись и без комплексных чисел, но тогда всё было бы намного сложнее. Тот факт, что комплексная арифметика не проходится ни в школах, ни почти в институтах, не делает её не нужной. Если вы хотите действительно стать нормальным инженером, вам строго необходимо понимание комплексных чисел.
Факультативно можно посмотреть в сторону кватернионов (там три разных мнимых единицы), октав (там их семь разных) и седенионов (там мнимых единиц пятнадцать). Это уже не является необходимым, но вероятно поможет понять формальность процедуры, которая даёт нам комплексные числа.
Для проверки того, насколько хорошо вы владеете арифметикой в этом пункте, попробуйте решить следующие упражнения:
а) Объясните, почему между любыми двумя вещественными числами найдётся сколь угодно много различных чисел, как рациональных, так и вещественных (здесь не требуется совершенно строгого формального доказательства, просто приведите рассуждения, убедительные лично для вас).
б) Объясните, почему не существует адекватного способа сравнивать комплексные числа на больше-меньше. (Подсказка: попробуйте определить является ли мнимая единица положительным или отрицательным числом).
в) Пусть рациональное число имеет вид a/bc, где b и c взаимопросты. Покажите каким образом отсюда можно получить его представление в виде
. Здесь, вероятно, вам будет полезно прочитать в общем виде об элементарных дробях (а для тех, кто интересуется теорией это вообще совершенно обязательно).
4. Начальная комбинаторика, матиндукция и суммы
Основы комбинаторики вы должны знать уже из изучения натуральных чисел. После того, как вам понятен комбинаторный смысл умножения и возведения в степень, надо идти дальше и понять что такое факториал, расстановки и сочетания. При изучении этого материала избегайте неинтуитивных рассуждений путём вывода формул одной из другой, а так же метода индукции. У каждой комбинаторной формулы есть простая интерпретация, которую и нужно понять, а вовсе не формальные выкладки.
Узнав про сочетания, которые называются так же биномиальным коэффициентом, изучите мультиномиальный коэффициент. Отсюда изучите Бином Ньютона (опять же не по индукции, а интуитивно комбинаторно — если вы хорошо понимаете биномиальный коэффициент, то сможете вывести формулу бинома как упражнение), а так же обобщение на случай суммы нескольких переменных (в этой ситуации биномиальный коэффициент заменяется на мультиномиальный).
Так же выведите
и дайте комбинаторную интерпретацию этому результату.
Выведите по аналогии
.
Данные результаты очень просты, желательно, чтобы вы вывели их самостоятельно.
Следующая формула к комбинаторике имеет уже мало отношения, но имеет интуитивную связь с биномом Ньютона, если рассматривать его как «формулу сокращенного умножения» и доказывается во многом так же:
— её нужно знать, особенно в частном случае для
.
Полезно так же почитать про приём двойного счета, принцип Дирихле и правило включения-исключения, а так же рассмотреть примеры применения этих приёмов.
Обязательно поймите принцип математической индукции. В самой комбинаторике гигантское количество утверждений может быть доказано методом математической индукции (хотя лучше её именно в комбинаторике и избегать из-за неинтуитивности), полно доказательств есть из теории чисел. Полезно найти формулу и доказать её по индукции для сумм
для значений p равных 1, 2 и 3. (Это не сложно сделать самостоятельно). Для теоретиков можно найти и разобраться в формуле Фаулхабера (позволяет считать такую сумму в общем виде) и числах Бернулли, но это уже только для теоретиков.
Так же изучите арифметические и геометрические прогрессии.
Для того, чтобы понимать как хорошо вы ориентируетесь в этой области, решите следующие упражнения:
а) Если в формуле разложения
заменить y на -y, то можно понять каким образом записать аналогичную формулу для суммы
, однако это сработает лишь в случае нечетного n. Тем не менее, иногда может помочь замена y на мнимое значение iy. Покажите для каких n будет возможно подобное разложение суммы степеней n и запишите его.
б) Любое натуральное число можно записать в виде суммы других натуральных чисел. Например,
. Таких разложений, естественно, очень много разных. Сколько именно? (Разложения следует рассматривать с точностью до порядка слагаемых).
в) Функция Эйлера
— это количество чисел, меньших чем n и взаимопростых с ним. Используя приём включения-исключения, выведите формулу для неё:
, где
— простые множители числа n.
5. Графики функций
Прежде чем строить графики функций, необходимо сделать небольшую подготовку: научиться решать квадратные уравнения и делить полиномы в столбик. Квадратные уравнения необходимо уметь решать через дополнение до полного квадрата — именно этот подход даёт логичное обоснование формулы с дискриминантом. Сам приём дополнения до полного квадрата крайне часто употребляется в самых разных математических выкладках.
Необходимо знать как выглядят основные виды графиков: линейный
, степенной
, график квадратичной функции
и дробно-линейный
. График квадратичной функции поможет строить умение решать квадратные уравнения, график дробно-линеной функции как раз умение делить полиномы.
Если вам уже известен график некоторой функции
, необходимо уметь построить так же график функций
,
,
,
,
,
. Важно уметь строить график обратной функции.
Так же на этом этапе полезно иметь хотя бы общее представление о том как устроены графики функций комплексного переменного как отображение кривых комплексной плоскости.
Несколько простейших вопросов, которые напрямую не связаны с графиками, но имеют графическую интерпретацию:
а) Функция называется четной, если
и нечётной, если
. Охарактеризуйте четность и нечетность с точки зрения графика функции. Может ли функция быть одновременно и четной и нечетной? Перечислите все такие функции.
б) Функция называется периодической, если существует такое T, отличное от нуля, что
для любого
. Охарактеризуйте это определение с точки зрения графика функции. Существует ли такая периодичная функция, что любое значение T будет её периодом?
в) Пусть даны две функции. Как найти точки пересечения их графиков?
5. Уравнения, неравенства, системы уравнений
К этому моменту вы уже должны уметь решать квадратные уравнения и понимать принцип дополнения до полных квадратов. В качестве факультатива можете посмотреть как решаются уравнения третьей и четвертой степеней. Это не особо важно, но занятно. Тут надо сказать, что наиболее часто встречающийся подход — это использование формул Кардано и метод Феррари, которые могут показаться сложными. Есть однако и довольно элементарные подходы к решению уравнений третьей и четвертой степеней через обычные подстановки переменных и введение дополнительных неизвестных, чтобы подогнать формулу под вид квадрата. Такие подходы имеют ряд недостатков и не раскрывают свойств многочленов, но они довольно элементарны для понимания на школьном уровне. Разбор этих методов моет быть полезным упражнением.
Надо уметь решать основные виды частных случаев уравнений более высоких степеней. Например, уравнения вида
или уравнения с симметричными коэффициентами.
Сразу стоит оговориться, что аналитически уравнения старше четвертой степени в общем виде не решаются — это утверждение составляет выдающуюся теорему Абеля. Среднему читателю нет смысла углубляться в доказательство, но интересующимся теоретической математикой я настоятельно рекомендую ознакомиться с книжкой «Теорема Абеля в задачах и решениях» Алексеева А.Б.
Нужно знать основную теорему алгебры. Она заключается в том, что любой полином имеет комплексный корень. На данном этапе понять строгое доказательство этой теоремы вам не удастся, но элементарная интуиция о графиках комплексных функций может подсказать почему теорема верна. Для этого можно рассмотреть образ произвольной окружности в комплексной плоскости для произвольного полинома. Этим образом будет некая замкнутая линия. Начало координат окажется либо внутри этой линии, либо снаружи. В первом случае можно уменьшать радиус начальной окружности пока линия не пересечет начало координат (точка пересечения и будет корнем), во втором наоборот увеличивать радиус до пересечения образа с началом координат. В этом доказательстве очень много дыр, но пока вы вряд ли сможете сформулировать что-то более строгое. Однако такая иллюстрация даёт неплохую интуицию и понимание, строгость же придёт позже.
Из возможности делимости полиномов (с остатком и без) и из основной теоремы алгебры должен стать очевидным тот факт, что любой полином n-ой степени представим в виде
, где
— комплексные корни данного полинома. Отсюда элементарно выводятся формулы Виета в общем виде (если вы вывели сами Бином Ньютона, то и формулы Виета отсюда выведете). Если мы знаем, что все корни многочлена рациональны, то из формул Виета следует очевидный способ нахождения их перебором.
Если известно, что комплексное
является корнем многочлена
с вещественными коэффициентами, то подставив в него сопряженное
, мы убедимся, что оно так же является корнем. Отсюда можно получить аналогичное данному выше представление вещественного многочлена в виде
, где используются уже только вещественные корни и коэффициенты. Теперь очевидно, что любой вещественный многочлен нечетной степени имеет вещественный корень.
В качестве дополнения, но очень важного и интересного, я рекомендую на этом этапе узнать про производящие функции. Их почти нигде не проходят в России на инженерных специальностях, но однако они крайне важны в современной науке и имеют широчайшие применения. В комбинаторных задачах средней сложности и некоторых смежных областях (анализ последовательностей, теория вероятностей) это сейчас один из самых широкоупотребимых математических инструментов.
С неравенствами всё довольно просто — достаточно понять как решаются базовые случаи на уровне задачников к ЕГЭ. Там нет ничего сложного. Аналогично с системами уравнений. Важно понять общий принцип решения систем уравнений через выражение вначале одной из n переменных через
других, затем подстановкой этого значения в систему, выражения одной из оставшихся через остальные и т. д.
Можно посмотреть так же в сторону метода Гаусса решения систем линейных уравнений, но на самом деле это пока не обязательно — мотивация для решения таких систем и их важность станут понятны несколько позже.
Упражнения:
а) Решите уравнение
меньше чем за две минуты.
б) Используя формулы Виета, получите представление для дискриминанта квадратного уравнения в виде
, где
— корни многочлена. В отличие от привычной школьной формулы, это определение обобщается на случай многочленов произвольного порядка:
. Пользуясь этим определением и формулами Виета найдите дискриминант для многочлена
.
в) При каких параметрах a уравнение
имеет решение и какое? (Стоит рассматривать только целые
).
6. Показательная и логарифмическая функции
Определить строго эти функции в школьном курсе весьма сложно, поэтому придётся опираться не на строгость, а на интуицию.
Начать следует с показательной функции
. Как строить такую функцию для целых
понятно (из индуктивного определения легко следует как считать отрицательные целые степени). Степень вида
можно определить как корень степени
и использовав приём поразрядного подбора. Это следует из свойства
. Воспользовавшись этим же свойством еще раз, можно определить возведение в любую рациональную степень.
Теперь встает вопрос как определять значения для иррациональных показателей степеней. Поскольку каждое иррациональное число сколь угодно точно может быть приближено рациональным числом, то и иррациональные показатели степени могут быть приближены рациональными степенями. Опять же строгое проведение этих рассуждений требует базовых сведений о пределах и топологии, поэтому на среднешкольном уровне оно невозможно. Однако можно найти много неформальных рассуждений в этом ключе, дающих хорошее понимание и интуицию.
Когда определена показательная функция, можно определить логарифм как функцию, обратную к показательной.
Следующими шагами является изучение максимума свойств логарифмов и показательных функций, включая неравенства и вид их графиков. Полезно почитать про выпуклость логарифма и показательной функции и следующих из этого неравенств.
Упражнения:
а) Пусть дано произвольное натуральное число x. Сколько разрядов потребуется для его записи в позиционной системе счисления с основанием k? (Для тех, кто пропустил системы счисления, рассмотрите только случай
).
б) Используя выпуклость логарифма докажите неравенство Юнга:
при
,
и
. Факультативно можете посмотреть в учебниках как из него выводятся неравенства Гёльдера и затем Минковского (сейчас это не необходимо, но позже они сыграют важную роль).
в) Используя неравенство <img src='http://s.wordpress.com/latex.php