MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Thursday, March 6th, 2014

    Time Event
    7:00p
    A river of plasma, guarding against the sun
    The Earth’s magnetic field, or magnetosphere, stretches from the planet’s core out into space, where it meets the solar wind, a stream of charged particles emitted by the sun. For the most part, the magnetosphere acts as a shield to protect the Earth from this high-energy solar activity.

    But when this field comes into contact with the sun’s magnetic field — a process called “magnetic reconnection” — powerful electrical currents from the sun can stream into Earth’s atmosphere, whipping up geomagnetic storms and space weather phenomena that can affect high-altitude aircraft, as well as astronauts on the International Space Station.

    Now scientists at MIT and NASA have identified a process in the Earth’s magnetosphere that reinforces its shielding effect, keeping incoming solar energy at bay.

    By combining observations from the ground and in space, the team observed a plume of low-energy plasma particles that essentially hitches a ride along magnetic field lines — streaming from Earth’s lower atmosphere up to the point, tens of thousands of kilometers above the surface, where the planet’s magnetic field connects with that of the sun. In this region, which the scientists call the “merging point,” the presence of cold, dense plasma slows magnetic reconnection, blunting the sun’s effects on Earth.

    “The Earth’s magnetic field protects life on the surface from the full impact of these solar outbursts,” says John Foster, associate director of MIT’s Haystack Observatory. “Reconnection strips away some of our magnetic shield and lets energy leak in, giving us large, violent storms. These plasmas get pulled into space and slow down the reconnection process, so the impact of the sun on the Earth is less violent.”

    Foster and his colleagues publish their results in this week’s issue of Science. The team includes Philip Erickson, principal research scientist at Haystack Observatory, as well as Brian Walsh and David Sibeck at NASA’s Goddard Space Flight Center.

    Mapping Earth’s magnetic shield

    For more than a decade, scientists at Haystack Observatory have studied plasma plume phenomena using a ground-based technique called GPS-TEC, in which scientists analyze radio signals transmitted from GPS satellites to more than 1,000 receivers on the ground. Large space-weather events, such as geomagnetic storms, can alter the incoming radio waves — a distortion that scientists can use to determine the concentration of plasma particles in the upper atmosphere. Using this data, they can produce two-dimensional global maps of atmospheric phenomena, such as plasma plumes.

    These ground-based observations have helped shed light on key characteristics of these plumes, such as how often they occur, and what makes some plumes stronger than others. But as Foster notes, this two-dimensional mapping technique gives an estimate only of what space weather might look like in the low-altitude regions of the magnetosphere. To get a more precise, three-dimensional picture of the entire magnetosphere would require observations directly from space.

    Toward this end, Foster approached Walsh with data showing a plasma plume emanating from the Earth’s surface, and extending up into the lower layers of the magnetosphere, during a moderate solar storm in January 2013. Walsh checked the date against the orbital trajectories of three spacecraft that have been circling the Earth to study auroras in the atmosphere.

    As it turns out, all three spacecraft crossed the point in the magnetosphere at which Foster had detected a plasma plume from the ground. The team analyzed data from each spacecraft, and found that the same cold, dense plasma plume stretched all the way up to where the solar storm made contact with Earth’s magnetic field.

    A river of plasma

    Foster says the observations from space validate measurements from the ground. What’s more, the combination of space- and ground-based data give a highly detailed picture of a natural defensive mechanism in the Earth’s magnetosphere.

    “This higher-density, cold plasma changes about every plasma physics process it comes in contact with,” Foster says. “It slows down reconnection, and it can contribute to the generation of waves that, in turn, accelerate particles in other parts of the magnetosphere. So it’s a recirculation process, and really fascinating.”

    Foster likens this plume phenomenon to a “river of particles,” and says it is not unlike the Gulf Stream, a powerful ocean current that influences the temperature and other properties of surrounding waters. On an atmospheric scale, he says, plasma particles can behave in a similar way, redistributing throughout the atmosphere to form plumes that “flow through a huge circulation system, with a lot of different consequences.”

    “What these types of studies are showing is just how dynamic this entire system is,” Foster adds.

    Tony Mannucci, supervisor of the Ionospheric and Atmospheric Remote Sensing Group at NASA’s Jet Propulsion Laboratory, says that although others have observed magnetic reconnection, they have not looked at data closer to Earth to understand this connection.

    “I believe this group was very creative and ingenious to use these methods to infer how plasma plumes affect magnetic reconnection,” says Mannucci, who was not involved in the research. “This discovery of the direct connection between a plasma plume and the magnetic shield surrounding Earth means that a new set of ground-based observations can be used to infer what is occurring deep in space, allowing us to understand and possibly forecast the implications of solar storms.”
    7:00p
    Measuring the migration of a river
    Large river networks — such as those that funnel into the Colorado and Mississippi rivers — may seem to be permanent features of a landscape. In fact, many rivers define political boundaries that have been in place for centuries.

    But scientists have long suspected that river networks are not as static as they may appear, and have gathered geologic and biological evidence that suggest many rivers have been “rewired,” shifting and moving across a landscape over millions of years.

    Now researchers at MIT and the Swiss Federal Institute of Technology (ETH Zurich) have developed a mapping technique that measures how much a river network is changing, and in what direction it may be moving. Their results are published in this week’s issue of Science.

    The technique focuses on a river network’s drainage divides — ridgelines, such as along mountain ranges, that act as boundaries between two river basins. As rainwater flows down either side of a drainage divide and into opposing rivers, it erodes the underlying rock. The river on one side of a divide may erode faster than the other, creating what the researchers call an “imbalance” in the river network. To reach a balance, they reasoned that a drainage divide must shift to assume a more stable pattern.


    The team came up with a measurement technique to determine the direction in which a divide would have to move to bring its river networks into balance, and then made these measurements in actual landscapes, including regions in China, Taiwan, and the southeastern United States. They found that while some river networks matched the stable pattern — suggesting that these are relatively static — other networks, such as those in the southeastern U.S., produced patterns implying that these regions are currently shifting and changing.

    “We’re able to get a sense of whether a given river network is undergoing dramatic change, and whether individual drainage basins are shrinking, expanding, or migrating laterally,” says co-author Taylor Perron, an assistant professor of geology in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “We take an instantaneous snapshot of the degree of reorganization, and also the direction in which it’s happening.”

    Balancing across a divide

    Knowing where river systems are shifting may help explain curious disparities found in certain river basins. For instance, Perron points to some river networks where scientists have identified sediment or fish species that better match the geology or genetic makeup of a nearby river basin. The drainage divide separating these basins may have shifted abruptly sometime in the past, transferring one river’s headwaters to the river on the opposite side.

    How ridgelines, or drainage divides, migrate is determined by how fast either side of a ridge erodes. If a river on one side cuts into the underlying bedrock faster than the river on the other side of the divide, this imbalance can push a ridge across a landscape over time.

    “But that’s pretty hard to gauge,” Perron says. “Measuring these very slow erosion rates, typically tenths of a millimeter per year, is difficult. You can’t go to a river and point your Star Trek tricorder at it and see how fast it’s eroding.”

    Instead, the researchers calculated what’s called an “equilibrium elevation” for drainage basins on either side of a divide — that is, how high or low a riverbed would have to be to balance two forces: a river’s erosion into rock, and a region’s tectonic activity, which pushes rock up. A mismatch in equilibrium elevation across a drainage divide means the divide is likely in motion: To reach a stable state, the divide must migrate toward the side with the higher equilibrium elevation.

    The researchers found that by mapping the equilibrium elevations of entire river networks and calculating mismatches across drainage divides, they could predict the directions in which divides throughout a landscape are migrating.

    Shifting boundaries

    The researchers applied their technique to three very different river networks, found in the Loess Plateau in China, the eastern Central Range in Taiwan, and the region between the Appalachian Mountains and the Atlantic Ocean in the southeastern U.S.

    As it turns out, the rivers of the Loess Plateau — a tectonically stable geologic region — are essentially stationary, as their equilibrium elevations are closely matched across drainage divides. However, the much younger river networks in Taiwan form a very different pattern, seeming to shift dramatically in response to tectonic activity in the region.

    What was most surprising to Perron was what is likely occurring in the southeastern United States. While the landscape, which stretches from northern Florida to Virginia, has not experienced much tectonic activity for hundreds of millions of years, the group’s map suggests that river networks in these areas are on the move. From their results, the researchers find that the Blue Ridge Escarpment is moving inland, and essentially dragging behind it river basins, slowly stretching them across the landscape. Over time, Perron says, larger basins near the coast will take over smaller ones, vastly changing the topography.

    “What you’d probably see is some of these smaller coastal drainage basins ceasing to exist, like the Ogeechee,” Perron says. “And some bigger basins, like the Roanoke and the Savannah, will probably get bigger. All of these boundaries are shifting, and depending on how long you wait, you could see them go very far.”

    Kelin Whipple, a professor of earth and space exploration at Arizona State University, says the group’s technique may help scientists understand the architecture of aquifers and petroleum reservoirs, as well as interactions among climate, tectonics, and seismic hazards.

    “They have provided a new tool to evaluate the possible influence of these processes and to identify places where they have been active,” says Whipple, who was not involved in the research. “The group’s technique is excellent and will prove a great addition to the arsenal of tools we have to query landscapes about their history.”

    << Previous Day 2014/03/06
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org