MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Thursday, November 19th, 2015

    Time Event
    12:00a
    What are your apps hiding?

    MIT researchers have found that much of the data transferred to and from the 500 most popular free applications for Google Android cellphones make little or no difference to the user’s experience.

    Of those “covert” communications, roughly half appear to be initiated by standard Android analytics packages, which report statistics on usage patterns and program performance and are intended to help developers improve applications.

    “The interesting part is that the other 50 percent cannot be attributed to analytics,” says Julia Rubin, a postdoc in MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), who led the new study. “There might be a very good reason for this covert communication. We are not trying to say that it has to be eliminated. We’re just saying the user needs to be informed.”

    The researchers reported their findings last week at the IEEE/ACM International Conference on Automated Software Engineering. Joining Rubin on the paper are Martin Rinard, a professor of computer science and engineering at MIT; Michael Gordon, who received his PhD in electrical engineering and computer science in 2010 and remained at CSAIL as a researcher until last July; and Nguyen Nguyen of the engineering firm UWin Software.

    Different operations performed by the same mobile app may require outside communication, and rather than try to coordinate shared access to a single communication channel, the app will typically open a separate communication channel for each operation.

    The researchers analyzed the number of communication channels opened by the 500 most popular mobile apps and found that roughly 50 percent of them appear to have no bearing on the user experience. That doesn’t necessarily translate directly to the quantity of data exchanged over those channels, but for short sessions of application use, the portion of transmitted data irrelevant to user experience is also as much as 50 percent.

    Across longer sessions, in which large files are transferred to the phone — by, say, music- or video-streaming services — the percentage of data transmitted covertly steadily diminishes. But covert communication channels remain open.

    Piercing the veil

    Mobile applications are usually proprietary: Their source code is not publicly available, and their developers frequently take pains to disguise the details of the programs’ execution, a technique known as obfuscation.

    But all programs written for the Android operating system have to use a standard set of procedures when interacting with a phone’s hardware. So it’s possible to determine which portions of an Android app control what’s displayed on the screen or piped through the speakers, and which portions open up communication channels.

    By mapping out all of the possible ways that data can flow through an application, the researchers’ analytic tools can determine whether a given command to open a communication channel will result in a control signal that goes to either the display or the speaker — and whether it won’t.

    To validate their analytic technique, the researchers produced modified versions of 47 of the top 100 Android apps, in which the communication channels that their tools identified as covert were disabled. They then conducted a series of usability studies in which pairs of subjects compared the performance of the modified and unmodified versions of the program.

    In 30 of the 47 applications, subjects could detect no difference between the two versions. In nine instances, advertisements were missing but program execution was unaffected. And in three cases, the subjects characterized the differences as “minor.” For instance, a popular free flashlight application offers users the option of buying functionality upgrades, and on the upgrade purchase screen, an icon was missing.

    Five of the applications stopped working entirely. But in at least one of those cases, the problem was with protections that the developer had put in place to prevent reselling of its proprietary software. The reasons for the failure of the other four were not clear.

    Who’s listening?

    The researchers also analyzed  data traffic from a few of the more popular apps, gleaning some insight about the possible purposes of their covert communications. A Wal-Mart app, for instance, allows users to scan the bar codes of products on the shelves of Wal-Mart stores and retrieve their prices. But every time it does that, it also sends information to a server that appears to be associated with eBay. Disabling that connection had no effect on the app’s behavior.

    Interestingly, Candy Crush Saga, a game that got some bad press a few years ago for apparent privacy violations, was one of the very few apps that appeared to engage in no covert communication. “They’ve become a model citizen,” Rubin says.

    The analytic tools that the researchers used were based on an earlier project from Rinard’s group, which Gordon had led. The U.S. Defense Advanced Research Projects Agency had sponsored research teams at nine universities in a four-year competition to develop techniques for identifying malicious software, or malware, in mobile applications developed for the Department of Defense by outside contractors. The DOD adopted the MIT team’s system, which provided the basic framework for the new analysis.

    “I think it’s great work,” says Omer Tripp, the technical lead on mobile security and privacy at IBM’s T. J. Watson Research Center. “Where there’s an element of surprise — and promise — is in the fact that you can’t really localize all these covert channels to advertising and analytics, which is what one would intuitively expect.”

    Tripp speculates that some of the covert communication may be anticipatory, in an attempt to guard against interruptions in Internet connectivity. “You may imagine that the application may want to be more resilient and go on functioning without reporting a problem,” he says. “Which, when you think about it, is an interesting opportunity for optimization.  Perhaps some users say, ‘If the app is willing to function without Internet connectivity, and I have a limited data plan, or I’m abroad and don’t want to use the Internet, I want to know that it still knows how to do that.’ The study sort of gives us the hope that in many cases this type of optimization could apply.”

    Tripp also points to a recent episode in which malicious hackers modified publicly distributed tools designed for iPhone application developers so that they injected malicious code into any application they were used to create. Even the best-intentioned developers could thus be party to breaches of security or privacy. “These are definitely use cases that are of interest to us at IBM,” he says.

    1:57p
    Armor plating with built-in transparent ceramic eyes

    Usually, it’s a tradeoff: If you want maximum physical protection, whether from biting predators or exploding artillery shells, that generally compromises your ability to see. But sea-dwelling creatures called chitons have figured out a way around that problem: Tiny eyes are embedded within their tough protective shells, with their transparent lenses made of the same ceramic material as the rest of their shells — and just as tough.

    These armor-plated eyes could provide a model for protective armor for soldiers or workers in hazardous surroundings, say researchers at MIT, Harvard University, and elsewhere who analyzed the structure and properties of these uniquely hardy optical systems. Their work is described this week in the journal Science by MIT professor Christine Ortiz; recent MIT graduate and Harvard postdoc Ling Li; recent MIT graduate Matthew Connors; MIT assistant professor Mathias Kolle; Joanna Aizenberg from Harvard University; and Daniel Speiser from the University of South Carolina.

    These chitons, a species called Acanthopleura granulate, have hundreds of tiny eyes dotting the surface of their tough shells. The researchers demonstrated that these are true eyes, capable of forming focused images. They also showed that unlike the eyes of almost all other living creatures, which are made primarily of protein, these eyes are made of the mineral aragonite, the same ceramic material as the rest of the creatures’ shells.

    These mineral-based eyes, Li says, “allow the animal to monitor its environment with the protective armor shell. The majority of the shell is opaque, and only the eyes are transparent.”

    Unlike most mollusks, chitons’ shells are made of eight overlapped plates, which allow them some flexibility. The little creatures — about the size of a potato chip, and resembling prehistoric trilobites — are found in many parts of the world, but are little noticed, as they resemble the rocks they adhere to.

    Since these chitons live in the intertidal zone — meaning they are sometimes underwater and sometimes exposed to air — their eyes need to be able to work in both environments. Using experimental measurements and theoretical modeling, the team was able to show that the eyes are able to focus light and form images within the photoreceptive chamber underneath the lens in both air and water.

    The team used specialized high-resolution X-ray tomography equipment at Argonne National Laboratory to probe the 3-D architecture of the tiny eyes, which are each less than a tenth of a millimeter across. Using other material characterization techniques, they were able to determine the size shape and crystal orientation of the crystalline grains that make up these lenses — critical to understanding their optical performance, Li says.

    While others had long ago noted the chitons’ tiny eyes, it had not been demonstrated that they were capable of forming focused images, as opposed to being simple photoreceptive areas. “A lot of people thought the eyes were so small, there was no way this small lens would be capable of forming an image,” Connors says. But the team isolated some of these lenses and “we were able to produce images,” he says.

    Ultimately, the research could lead to the design of bio-inspired materials to provide both physical protection and optical visibility at the same time. “Can we design some kind of structural material,” Li asks, “with additional capabilities for monitoring the environment?”  

    That remains to be seen, but the new understanding of how Acanthopleura granulata accomplishes that trick should provide some helpful clues, he says.

    “High-resolution structure and property studies of the chiton system provide fascinating discoveries into materials-level tradeoffs imposed by the disparate functional requirements, in this case protection and vision, and are key to extracting design principles for multifunctional bio-inspired armor,” says Ortiz, the Morris Cohen Professor of Materials Science and Engineering and MIT’s dean for graduate education.

    Peter Fratzl, a professor of biomaterials at the Max Planck Institute of Colloids and Interfaces in Potsdam, Germany, who was not involved in this research, says, “This is a truly impressive example of a multifunctional material.”

    “In many instances, materials represent a compromise between conflicting properties, and materials development is often targeted at finding the best possible compromise,” Fratzl adds. “In this paper, the MIT-Harvard collaboration shows that chitons, a variety of mollusks that lives on rocks, has a visual system fully integrated in its armor. It is really astonishing to see how minerals can be used at the same time to focus light and to provide mechanical protection.”

    The work was funded by the Department of Defense, the Army Research Office through the MIT Institute for Soldier Nanotechnologies, the National Science Foundation, and the Department of Energy.

    << Previous Day 2015/11/19
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org