MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Tuesday, August 2nd, 2016

    Time Event
    12:00a
    Targeting genes by the thousands

    Tim Wang came to MIT six years ago with a simple plan: He wanted to take a genetic approach to studying cancer.

    A PhD candidate in biology, Wang was drawn to the Institute partly by the prospect of working with some of the field’s most cutting-edge and revolutionary tools. One such opportunity, perhaps more significant than he could have anticipated upon arriving at MIT, arose with the recent advent of the genome-editing method known as CRISPR. Using this system, Wang has developed a research technique with broad applications for studying a myriad of diseases.  

    Meaningful impact

    Wang spent most of his childhood in California. After watching his dad work on computers around the house when he was growing up, he decided to pursue an undergraduate degree in computer science at the University of California at Berkeley. However, between his sophomore and junior year of college, Wang’s grandfather was diagnosed with non-Hodgkin’s lymphoma.

    “At the time I didn't really even know what that meant or what that was,” says Wang. “I became more interested in learning about cancer, and became more interested in biomedical research in general. What struck me was that the things you do in a lab might have a meaningful impact on people's lives. That the research can lead to a better understanding of disease and more effective treatments.”

    Wang shifted his major to bioengineering, which allowed him to combine computational biology, with its focus on analyzing large, genome-wide datasets, and fine-scale, molecular biology. By the end of his undergraduate degree, Wang knew he wanted to continue this type of work in graduate school at MIT.

    A long-term research question

    Wang’s research at MIT — which is co-advised by biology professors David Sabatini, a member of Whitehead Institute for Biomedical Research, and Eric Lander, director of the Broad Institute of MIT and Harvard — was set in motion long before he arrived on campus.

    For decades, even before researchers understood the chemical nature of genes, they have been manipulating them in model organisms such as fruit flies and bacteria. More recently, a few years before Wang came to MIT, large-scale research efforts at MIT and elsewhere took aim at human genes using a process called RNA interference. This approach harnesses the molecular machinery that human cells use to turn off genes, and directs it against specific genes of interest. With this approach, the system generally hit the intended gene target, but it also hit many other genes, a major problem with the technology.

    When Wang first started at MIT, he began working on an alternative strategy for manipulating human genes that had recently been developed at the Whitehead Institute. The strategy relies on an unusual human leukemia cell line that, for unknown reasons, has roughly half the genetic material of normal human cells  — one copy of every gene instead of two. These cells are much easier and more straightforward to manipulate because inactivating that single gene copy is enough to produce an observable change. However, working with such an odd cell line in research isn’t exactly practical.

    “The key limitation of the method was the cell line,” says Wang. “It couldn't be applied to study different types of cancer or to look at different mutations.”

    A search for cancer’s Achilles' heel

    During Wang’s third year at MIT, a groundbreaking study described a rapid way to edit human genes using the CRISPR system (pronounced “crisper”). The research was led by Feng Zhang, the W. M. Keck Career Development Associate Professor in Biomedical Engineering and a member of the Broad Institute and the McGovern Institute for Brain Research. In bacteria, CRISPR acts as a primitive immune system to provide protection against invading viruses by cutting up their DNA, like a pair of molecular scissors. Zhang and his team quickly realized that this system could be used in human cells as well.

    “Compared to previous methods used to edit the genome, CRISPR was so much easier to program,” says Wang. “I immediately thought about how CRISPR could be applied to my research.” Luckily for Wang, Zhang’s lab at the time was just one floor below at the Broad Institute. “So I began chatting with Feng and members of his lab and, together, we began trying to see how we could make it all work,” he says.

    Scientists all over the world began using CRISPR to target their favorite genes, one by one. Wang had a different idea. He wanted to use CRISPR to target all of the genes at once, so that he could assess the function of every gene in the entire genome and see which ones were important for the growth of cancer cells. Working in close collaboration with the Zhang lab, Wang set off on a series of experiments to put this idea into practice.

    The plan was deceptively simple: Grow millions of cells and use CRISPR to knock out one gene in each cell (gene A in some, gene B in others, and so on). During this process, each cell is marked with a genetic “barcode” that allows Wang to determine which gene has been knocked out. Then Wang grows these barcoded cells in a dish and sees which ones survive and which ones die, telling him which genes are essential for cancer cell growth.

    Of course, it’s not quite that straightforward. Most of the essential genes in cancer cells are essential for healthy cells, too. The trick is to compare across a large collection of cancer cell lines and identify genes that are essential only in a specific context (for instance, a specific type of cancer or cancers which have a particular mutation). These context-specific essential genes — or “the Achilles’ heels of cancer” — could serve as targets for new, personalized cancer therapies.

    The new technique immediately created quite a buzz, as other research groups began adopting it to study everything from Huntington's disease to aging, a testament to its broad applicability. And the buzz hadn’t been confined to academia.  

    “After we co-published our papers, it spurred a lot of interest from many pharmaceutical companies,” says Wang. “I think they've engaged us because a lot of what we find is directly relevant to what they're doing. And that's very exciting to me, because they can take our findings to the next step and develop drugs for patients.”

    However, Wang himself is intent on staying in academia and hopes to someday become a professor running his own lab.

    “I love to work on new ideas and develop new kinds of tools to tackle basic questions,” says Wang.

    Changing course

    For the immediate future, Wang has his sights on something else entirely — a postdoctoral research position in neuroscience, an unfamiliar field that will surely challenge him and push him in new ways as he tackles an entirely different set of questions.    

    “There are many fascinating questions about the brain that are unanswered,” says Wang. “In many cases, even the fundamental organizing principles remain to be discovered. Unlike much of the work with CRISPR and cancer that we're doing now, there's still that foundation to be built in neuroscience, and the prospect of doing that is very appealing to me.”
     

    11:59p
    Carbon nanotube “stitches” strengthen composites

    The newest Airbus and Boeing passenger jets flying today are made primarily from advanced composite materials such as carbon fiber reinforced plastic — extremely light, durable materials that reduce the overall weight of the plane by as much as 20 percent compared to aluminum-bodied planes. Such lightweight airframes translate directly to fuel savings, which is a major point in advanced composites’ favor.

    But composite materials are also surprisingly vulnerable: While aluminum can withstand relatively large impacts before cracking, the many layers in composites can break apart due to relatively small impacts — a drawback that is considered the material’s Achilles’ heel.

    Now MIT aerospace engineers have found a way to bond composite layers in such a way that the resulting material is substantially stronger and more resistant to damage than other advanced composites. Their results are published this week in the journal Composites Science and Technology.

    The researchers fastened the layers of composite materials together using carbon nanotubes — atom-thin rolls of carbon that, despite their microscopic stature, are incredibly strong. They embedded tiny “forests” of carbon nanotubes within a glue-like polymer matrix, then pressed the matrix between layers of carbon fiber composites. The nanotubes, resembling tiny, vertically-aligned stitches, worked themselves within the crevices of each composite layer, serving as a scaffold to hold the layers together.

    In experiments to test the material’s strength, the team found that, compared with existing composite materials, the stitched composites were 30 percent stronger, withstanding greater forces before breaking apart.

    Roberto Guzman, who led the work as an MIT postdoc in the Department of Aeronautics and Astronautics (AeroAstro), says the improvement may lead to stronger, lighter airplane parts — particularly those that require nails or bolts, which can crack conventional composites.

    “More work needs to be done, but we are really positive that this will lead to stronger, lighter planes,” says Guzman, who is now a researcher at the IMDEA Materials Institute, in Spain. “That means a lot of fuel saved, which is great for the environment and for our pockets.”

    The study’s co-authors include AeroAstro professor Brian Wardle and researchers from the Swedish aerospace and defense company Saab AB.

    “Size matters”

    Today’s composite materials are composed of layers, or plies, of horizontal carbon fibers, held together by a polymer glue, which Wardle describes as “a very, very weak, problematic area.” Attempts to strengthen this glue region include Z-pinning and 3-D weaving — methods that involve pinning or weaving bundles of carbon fibers through composite layers, similar to pushing nails through plywood, or thread through fabric.

    “A stitch or nail is thousands of times bigger than carbon fibers,” Wardle says. “So when you drive them through the composite, you break thousands of carbon fibers and damage the composite.”

    Carbon nanotubes, by contrast, are about 10 nanometers in diameter — nearly a million times smaller than the carbon fibers.

    “Size matters, because we’re able to put these nanotubes in without disturbing the larger carbon fibers, and that’s what maintains the composite’s strength,” Wardle says. “What helps us enhance strength is that carbon nanotubes have 1,000 times more surface area than carbon fibers, which lets them bond better with the polymer matrix.”

    Stacking up the competition

    Guzman and Wardle came up with a technique to integrate a scaffold of carbon nanotubes within the polymer glue. They first grew a forest of vertically-aligned carbon nanotubes, following a procedure that Wardle’s group previously developed. They then transferred the forest onto a sticky, uncured composite layer and repeated the process to generate a stack of 16 composite plies — a typical composite laminate makeup — with carbon nanotubes glued between each layer.

    To test the material’s strength, the team performed a tension-bearing test — a standard test used to size aerospace parts — where the researchers put a bolt through a hole in the composite, then ripped it out. While existing composites typically break under such tension, the team found the stitched composites were stronger, able to withstand 30 percent more force before cracking.

    The researchers also performed an open-hole compression test, applying force to squeeze the bolt hole shut. In that case, the stitched composite withstood 14 percent more force before breaking, compared to existing composites.

    “The strength enhancements suggest this material will be more resistant to any type of damaging events or features,” Wardle says. “And since the majority of the newest planes are more than 50 percent composite by weight, improving these state-of-the art composites has very positive implications for aircraft structural performance.”

    Stephen Tsai, emeritus professor of aeronautics and astronautics at Stanford University, says advanced composites are unmatched in their ability to reduce fuel costs, and therefore, airplane emissions.

    “With their intrinsically light weight, there is nothing on the horizon that can compete with composite materials to reduce pollution for commercial and military aircraft,” says Tsai, who did not contribute to the study. But he says the aerospace industry has refrained from wider use of these materials, primarily because of a “lack of confidence in [the materials’] damage tolerance. The work by Professor Wardle addresses directly how damage tolerance can be improved, and thus how higher utilization of the intrinsically unmatched performance of composite materials can be realized.”

    This work was supported by Airbus Group, Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems Inc., Textron Systems, ANSYS, Hexcel, and TohoTenax through MIT's Nano-Engineered Composite aerospace STructures (NECST) Consortium and, in part, by the U.S. Army.

    << Previous Day 2016/08/02
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org