MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Thursday, July 27th, 2017

    Time Event
    2:00p
    Ultracold molecules hold promise for quantum computing

    Researchers have taken an important step toward the long-sought goal of a quantum computer, which in theory should be capable of vastly faster computations than conventional computers, for certain kinds of problems. The new work shows that collections of ultracold molecules can retain the information stored in them, for hundreds of times longer than researchers have previously achieved in these materials.

    These two-atom molecules are made of sodium and potassium and were cooled to temperatures just a few ten-millionths of a degree above absolute zero (measured in hundreds of nanokelvins, or nK). The results are described in a report this week in Science, by Martin Zwierlein, an MIT professor of physics and a principal investigator in MIT's Research Laboratory of Electronics; Jee Woo Park, a former MIT graduate student; Sebastian Will, a former research scientist at MIT and now an assistant professor at Columbia University, and two others, all at the MIT-Harvard Center for Ultracold Atoms.

    Many different approaches are being studied as possible ways of creating qubits, the basic building blocks of long-theorized but not yet fully realized quantum computers. Researchers have tried using superconducting materials, ions held in ion traps, or individual neutral atoms, as well as molecules of varying complexity. The new approach uses a cluster of very simple molecules made of just two atoms.

    “Molecules have more ‘handles’ than atoms,” Zwierlein says, meaning more ways to interact with each other and with outside influences. “They can vibrate, they can rotate, and in fact they can strongly interact with each other, which atoms have a hard time doing. Typically, atoms have to really meet each other, be on top of each other almost, before they see that there's another atom there to interact with, whereas molecules can see each other” over relatively long ranges. “In order to make these qubits talk to each other and perform calculations, using molecules is a much better idea than using atoms,” he says.

    Using this kind of two-atom molecules for quantum information processing “had been suggested some time ago,” says Park, “and this work demonstrates the first experimental step toward realizing this new platform, which is that quantum information can be stored in dipolar molecules for extended times.”

    “The most amazing thing is that [these] molecules are a system which may allow realizing both storage and processing of quantum information, using the very same physical system,” Will says. “That is actually a pretty rare feature that is not typical at all among the qubit systems that are mostly considered today.”

    In the team’s initial proof-of-principle lab tests, a few thousand of the simple molecules were contained in a microscopic puff of gas, trapped at the intersection of two laser beams and cooled to ultracold temperatures of about 300 nanokelvins. “The more atoms you have in a molecule the harder it gets to cool them,” Zwierlein says, so they chose this simple two-atom structure.  

    The molecules have three key characteristics: rotation, vibration, and the spin direction of the nuclei of the two individual atoms. For these experiments, the researchers got the molecules under perfect control in terms of all three characteristics — that is, into the lowest state of vibration, rotation, and nuclear spin alignment.

    “We have been able to trap molecules for a long time, and also demonstrate that they can carry quantum information and hold onto it for a long time,” Zwierlein says. And that, he says, is “one of the key breakthroughs or milestones one has to have before hoping to build a quantum computer, which is a much more complicated endeavor.”

    The use of sodium-potassium molecules provides a number of advantages, Zwierlein says. For one thing, “the molecule is chemically stable, so if one of these molecules meets another one they don't break apart.”

    In the context of quantum computing, the “long time” Zwierlein refers to is one second — which is “in fact on the order of a thousand times longer than a comparable experiment that has been done” using rotation to encode the qubit, he says. “Without additional measures, that experiment gave a millisecond, but this was great already.” With this team’s method, the system’s inherent stability means “you get a full second for free.”

    That suggests, though it remains to be proven, that such a system would be able to carry out thousands of quantum computations, known as gates, in sequence within that second of coherence. The final results could then be “read” optically through a microscope, revealing the final state of the molecules.

    “We have strong hopes that we can do one so-called gate — that's an operation between two of these qubits, like addition, subtraction, or that sort of equivalent — in a fraction of a millisecond,” Zwierlein says. “If you look at the ratio, you could hope to do 10,000 to 100,000 gate operations in the time that we have the coherence in the sample. That has been stated as one of the requirements for a quantum computer, to have that sort of ratio of gate operations to coherence times.”

    “The next great goal will be to ‘talk’ to individual molecules. Then we are really talking quantum information,” Will says. “If we can trap one molecule, we can trap two. And then we can think about implementing a ‘quantum gate operation’ — an elementary calculation — between two molecular qubits that sit next to each other,” he says.

    Using an array of perhaps 1,000 such molecules, Zwierlein says, would make it possible to carry out calculations so complex that no existing computer could even begin to check the possibilities. Though he stresses that this is still an early step and that such computers could be a decade or more away, in principle such a device could quickly solve currently intractable problems such as factoring very large numbers — a process whose difficulty forms the basis of today’s best encryption systems for financial transactions.

    Besides quantum computing, the new system also offers the potential for a new way of carrying out precision measurements and quantum chemistry, Zwierlein says.

    “These results are truly state of the art,” says Simon Cornish, a professor of physics at Durham University in the U.K., who was not involved in this work. The findings “beautifully reveal the potential of exploiting nuclear spin states in ultracold molecules for applications in quantum information processing, as quantum memories and as a means to probe dipolar interactions and ultracold collisions in polar molecules,” he says. “I think the results constitute a major step forward in the field of ultracold molecules and will be of broad interest to the large community of researchers exploring related aspects of quantum science, coherence, quantum information, and quantum simulation.”

    The team also included MIT graduate student Zoe Yan and postdoc Huanqian Loh. The work was supported by the National Science Foundation, the U.S. Air Force Office of Scientific Research, the U.S. Army Research Office, and the David and Lucile Packard Foundation.

    4:40p
    Monitoring metabolic energy expenditure, health, and fitness with a breath analyzer

    The U.S. military has great interest in more comprehensive measurement and tracking of metabolism, both for optimizing the performance of warfighters under demanding physical conditions and for maintaining the health and wellness of forces during and after their military careers. While sensors for making metabolic measurements have existed for decades, they are expensive, cumbersome instruments primarily intended for clinical or professional use. MIT Lincoln Laboratory, in collaboration with the U.S. Army Research Institute for Environmental Medicine (USARIEM), has undertaken a research effort to create a low-cost personal metabolic sensor and an associated metabolic fuel model. The Carbon dioxide/Oxygen Breath and Respiration Analyzer (COBRA) enables individuals to make on-demand metabolic measurements simply by breathing into it.

    “Besides assessing performance of soldiers in the field, the COBRA can be applied to broader purposes, such as training athletes for high-endurance activities, guiding weight loss by quantifying the impact of dietary and exercise regimens, or identifying nutritional imbalances,” says Kyle Thompson, a member of the development team from Lincoln Laboratory’s Mechanical Engineering Group.

    Since the early 20th century, scientists have been using indirect calorimetry (IC) to calculate individual energy expenditure and metabolic rates. This method measures the ratio of carbon dioxide to oxygen in exhaled breath, which can be used to measure the levels of carbohydrates and fats being used by the body to meet metabolic energy needs. Information about energy expenditure rates is valuable for setting reasonable physical standards within the military. For example, limits on the distance and speed of foot marches can best be established by quantifying metabolic workloads of soldiers. The Soldier 2020 program is currently employing metabolic energy measurement to help establish job-related fitness requirements.

    “For high-performance athletes or active-duty soldiers, optimally matching nutritional intake to the demands of a specific activity can improve performance and increase the likelihood of successful mission completion,” says Gary Shaw, principal investigator on the laboratory’s COBRA team. Physically demanding tasks can lead to glycogen depletion, which has a negative impact on performance. By tracking energy expenditure in real-time, soldiers could detect and avoid the onset of low glucose levels associated with glycogen depletion as well as other metabolic complications, such as heat stress.

    While existing mobile IC sensors can make physiological measurements, they are expensive and complex to calibrate since their application has largely been limited to clinical studies, high-performance athletics, and field testing with small groups of subjects over limited periods of time. The COBRA sensor is smaller, simpler to use, and less costly to manufacture than existing IC sensors, enabling the measurement of individual energy expenditure for dozens of soldiers in a military field unit throughout the day. Lincoln Laboratory researchers hope to use such measurements to refine the personalized metabolic fuel model for individuals, track nutritional needs, and assess the impact of training on the individual’s metabolic efficiency and endurance.

    “The COBRA system is a breakthrough technology that promises to provide performance comparable to $30,000-$40,000 sensors at a fraction of the cost and with ease of use that makes personal ownership feasible,” Shaw says.

    USARIEM is currently testing and evaluating the COBRA sensor by comparing the COBRA measurements against those collected by laboratory-grade instruments. Once the sensor performance has been benchmarked in the laboratory, USARIEM will conduct small field studies to measure energy expenditure and nutrient consumption associated with different training exercises. Following successful field measurements, low-rate production of the COBRA sensor may be pursued in order to study energy expenditure and performance across dozens of soldiers  over days of activity.

    Beyond its use in studies of the performance of soldiers and athletes, the COBRA sensor and associated metabolic model can be applied to the management of the general population’s metabolic health. It is anticipated that the COBRA sensor and metabolic model can be used to tailor dietary and exercise regimens for managing weight, inferring blood glucose and glycogen storage levels, and creating public databases on metabolic wellness and trends. This information could be used by clinicians and patients to aid in controlling obesity, which affects over one-third of Americans, and to provide a non-invasive indication of chronically high blood glucose, which is associated with the development of type-2 diabetes. According to the Centers for Disease Control and Prevention, nearly half of the adult population in the United States is either diabetic or pre-diabetic.

    There are several promising avenues for the COBRA sensor’s future. The researchers have applied for a patent and plan to conduct single-subject experiments to demonstrate how the sensor can be used in assessing nutritional imbalances. The laboratory will also seek opportunities to collaborate with other researchers interested in using COBRA as a tool in clinical studies, including those concerned with weight loss and endurance training.

    << Previous Day 2017/07/27
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org