MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Tuesday, December 5th, 2017

    Time Event
    11:00a
    Engineers 3-D print a “living tattoo”

    MIT engineers have devised a 3-D printing technique that uses a new kind of ink made from genetically programmed living cells.

    The cells are engineered to light up in response to a variety of stimuli. When mixed with a slurry of hydrogel and nutrients, the cells can be printed, layer by layer, to form three-dimensional, interactive structures and devices.

    The team has then demonstrated its technique by printing a “living tattoo” — a thin, transparent patch patterned with live bacteria cells in the shape of a tree. Each branch of the tree is lined with cells sensitive to a different chemical or molecular compound. When the patch is adhered to skin that has been exposed to the same compounds, corresponding regions of the tree light up in response.

    The researchers, led by Xuanhe Zhao, the Noyce Career Development Professor in MIT’s Department of Mechanical Engineering, and Timothy Lu, associate professor of biological engineering and of electrical engineering and computer science, say that their technique can be used to fabricate “active” materials for wearable sensors and interactive displays. Such materials can be patterned with live cells engineered to sense environmental chemicals and pollutants as well as changes in pH and temperature.

    What’s more, the team developed a model to predict the interactions between cells within a given 3-D-printed structure, under a variety of conditions. The team says researchers can use the model as a guide in designing responsive living materials.

    Zhao, Lu, and their colleagues have published their results today in the journal Advanced Materials. The paper’s co-authors are graduate students Xinyue Liu, Hyunwoo Yuk, Shaoting Lin, German Alberto Parada, Tzu-Chieh Tang, Eléonore Tham, and postdoc Cesar de la Fuente-Nunez.

    A hardy alternative

    In recent years, scientists have explored a variety of responsive materials as the basis for 3D-printed inks. For instance, scientists have used inks made from temperature-sensitive polymers to print heat-responsive shape-shifting objects. Others have printed photoactivated structures from polymers that shrink and stretch in response to light.  

    Zhao’s team, working with bioengineers in Lu’s lab, realized that live cells might also serve as responsive materials for 3D-printed inks, particularly as they can be genetically engineered to respond to a variety of stimuli. The researchers are not the first to consider 3-D printing genetically engineered cells; others have attempted to do so using live mammalian cells, but with little success.

    “It turns out those cells were dying during the printing process, because mammalian cells are basically lipid bilayer balloons,” Yuk says. “They are too weak, and they easily rupture.”

    Instead, the team identified a hardier cell type in bacteria. Bacterial cells have tough cell walls that are able to survive relatively harsh conditions, such as the forces applied to ink as it is pushed through a printer’s nozzle. Furthermore, bacteria, unlike mammalian cells, are compatible with most hydrogels — gel-like materials that are made from a mix of mostly water and a bit of polymer. The group found that hydrogels can provide an aqueous environment that can support living bacteria.

    The researchers carried out a screening test to identify the type of hydrogel that would best host bacterial cells. After an extensive search, a hydrogel with pluronic acid was found to be the most compatible material. The hydrogel also exhibited an ideal consistency for 3-D printing.

    “This hydrogel has ideal flow characteristics for printing through a nozzle,” Zhao says. “It’s like squeezing out toothpaste. You need [the ink] to flow out of a nozzle like toothpaste, and it can maintain its shape after it’s printed.”

    From tattoos to living computers

    Lu provided the team with bacterial cells engineered to light up in response to a variety of chemical stimuli. The researchers then came up with a recipe for their 3-D ink, using a combination of bacteria, hydrogel, and nutrients to sustain the cells and maintain their functionality.

    “We found this new ink formula works very well and can print at a high resolution of about 30 micrometers per feature,” Zhao says. “That means each line we print contains only a few cells. We can also print relatively large-scale structures, measuring several centimeters.”

    They printed the ink using a custom 3-D printer that they built using standard elements combined with fixtures they machined themselves. To demonstrate the technique, the team printed a pattern of hydrogel with cells in the shape of a tree on an elastomer layer. After printing, they solidified, or cured, the patch by exposing it to ultraviolet radiation. They then adhere the transparent elastomer layer with the living patterns on it, to skin.

    To test the patch, the researchers smeared several chemical compounds onto the back of a test subject’s hand, then pressed the hydrogel patch over the exposed skin. Over several hours, branches of the patch’s tree lit up when bacteria sensed their corresponding chemical stimuli.

    The researchers also engineered bacteria to communicate with each other; for instance they programmed some cells to light up only when they receive a certain signal from another cell. To test this type of communication in a 3-D structure, they printed a thin sheet of hydrogel filaments with “input,” or signal-producing bacteria and chemicals, overlaid with another layer of filaments of an “output,” or signal-receiving bacteria. They found the output filaments lit up only when they overlapped and received input signals from corresponding bacteria .

    Yuk says in the future, researchers may use the team’s technique to print “living computers” — structures with multiple types of cells that communicate with each other, passing signals back and forth, much like transistors on a microchip.

    “This is very future work, but we expect to be able to print living computational platforms that could be wearable,” Yuk says.

    For more near-term applications, the researchers are aiming to fabricate customized sensors, in the form of flexible patches and stickers that could be engineered to detect a variety of chemical and molecular compounds. They also envision their technique may be used to manufacture drug capsules and surgical implants, containing cells engineered produce compounds such as glucose, to be released therapeutically over time.

    “We can use bacterial cells like workers in a 3-D factory,” Liu says. “They can be engineered to produce drugs within a 3-D scaffold, and applications should not be confined to epidermal devices. As long as the fabrication method and approach are viable, applications such as implants and ingestibles should be possible.”

    This research was supported, in part, by the Office of Naval Research, National Science Foundation, National Institutes of Health, and MIT Institute for Soldier Nanotechnologies.

    5:30p
    Preventing the next blackout

    Nine of the 10 biggest blackouts in U.S. history were caused by hurricanes, whose sustained high winds have knocked out power lines over broad geographical areas. Topping the list is Hurricane Maria, which in October disabled the electric grid in Puerto Rico and the U.S. Virgin Islands, leaving the majority of the populations there without power for months.

    Climate scientists project that as the global average surface temperature continues to rise, so too will the frequency and intensity of major storms, as well as of heat waves and high temperatures. As a result, we are likely to see even more widespread power outages — not only from hurricane winds but also from the effects of prolonged and extreme heat on a critical yet vulnerable component of the power grid: the large power transformer (LPT).     

    LPTs are transformers rated at or above 100 MVA (mega volt-amperes), and thousands are deployed across the U.S. The current stock of LPTs is old: Seventy percent or more are 25 years or older. They have an expected lifetime of 40 years, and are very costly and time-consuming to replace.

    Driven by global warming, more frequent and intense heat waves may degrade the operational lifetimes of LPTs and increase the risk of their premature failure. Overheating reduces the structural integrity of the electrical paper insulation used in LPTs, causing catastrophic short circuits. The failure rate becomes more pronounced as rising temperatures cause more intense chemical reactions that age the insulation. Widespread LPT failure could lead to long-lasting grid disruption — with collateral impacts on grid-reliant systems such as communications, financial, and cyber systems — and major economic losses.

    To assess the accelerated risk of LPT failure in coming decades, researchers from the MIT Joint Program on the Science and Policy of Global Change and MIT Lincoln Laboratory studied the potential impact of global warming and corresponding shifts in summertime hot days on LPT lifetime at an LPT location in the U.S. Northeast. They found that for a background 1 degree Celcius rise in temperature, the lifetime of the transformer decreases by four years, or by 10 percent. Therefore, end-of-century mean global warming projections of approximately 2 degrees (a climate policy-driven scenario) and 4 degrees (a business-as-usual scenario) would result in a mean reduction in expected transformer lifetime of 20 to 40 percent. The results of the study are reported in the journal Climatic Change.

    “Studies such as these spotlight how vulnerable the intricate electrical network upon which we rely is to damaging weather and climate events,” says Joint Program Deputy Director C. Adam Schlosser, a co-author of the study. “Our electric grid is tasked with maintaining operations at-or-nearly 100 percent of the time, even under extreme weather and climate conditions, and so growing risks and threats must be quantified in order to inform action and implement the proper strategies proactively and cost-effectively.”

    The researchers also assessed the future changes in hot-day occurrence under the 2-degree and 4-degree climate scenarios, using two different approaches: a conventional method that detects the occurrence of hot days based on the projected daily maximum temperature from a suite of climate models, and a recently developed analogue method that instead uses climate model-simulated large-scale atmospheric patterns (e.g., wind and pressure conditions) associated with observed local extreme temperature.

    Both methods indicate strong decadal increases in hot-day frequency. By the late 21st century, the median number of summertime hot days per year could double under the 2-degree scenario and increase fivefold under the 4-degree scenario, along with the aforementioned decreases in transformer lifetime.

    Most importantly, the analogue method showed far greater inter-model consensus — i.e., a smaller range of outcomes in the results.

    “The improved inter-model consensus of the analogue method is a promising step toward providing actionable information for a more stable, reliable and environmentally responsible national grid,” says Xiang Gao, the study’s lead author.

    << Previous Day 2017/12/05
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org