MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Thursday, December 21st, 2017

    Time Event
    1:30p
    Can computers help us synthesize new materials?

    Last month, three MIT materials scientists and their colleagues published a paper describing a new artificial-intelligence system that can pore through scientific papers and extract “recipes” for producing particular types of materials.

    That work was envisioned as the first step toward a system that can originate recipes for materials that have been described only theoretically. Now, in a paper in the journal npj Computational Materials, the same three materials scientists, with a colleague in MIT’s Department of Electrical Engineering and Computer Science (EECS), take a further step in that direction, with a new artificial-intelligence system that can recognize higher-level patterns that are consistent across recipes.

    For instance, the new system was able to identify correlations between “precursor” chemicals used in materials recipes and the crystal structures of the resulting products. The same correlations, it turned out, had been documented in the literature.

    The system also relies on statistical methods that provide a natural mechanism for generating original recipes. In the paper, the researchers use this mechanism to suggest alternative recipes for known materials, and the suggestions accord well with real recipes.

    The first author on the new paper is Edward Kim, a graduate student in materials science and engineering. The senior author is his advisor, Elsa Olivetti, the Atlantic Richfield Assistant Professor of Energy Studies in the Department of Materials Science and Engineering (DMSE). They’re joined by Kevin Huang, a postdoc in DMSE, and by Stefanie Jegelka, the X-Window Consortium Career Development Assistant Professor in EECS.

    Sparse and scarce

    Like many of the best-performing artificial-intelligence systems of the past 10 years, the MIT researchers’ new system is a so-called neural network, which learns to perform computational tasks by analyzing huge sets of training data. Traditionally, attempts to use neural networks to generate materials recipes have run up against two problems, which the researchers describe as sparsity and scarcity.

    Any recipe for a material can be represented as a vector, which is essentially a long string of numbers. Each number represents a feature of the recipe, such as the concentration of a particular chemical, the solvent in which it’s dissolved, or the temperature at which a reaction takes place.

    Since any given recipe will use only a few of the many chemicals and solvents described in the literature, most of those numbers will be zero. That’s what the researchers mean by “sparse.”

    Similarly, to learn how modifying reaction parameters — such as chemical concentrations and temperatures — can affect final products, a system would ideally be trained on a huge number of examples in which those parameters are varied. But for some materials — particularly newer ones — the literature may contain only a few recipes. That’s scarcity.

    “People think that with machine learning, you need a lot of data, and if it’s sparse, you need more data,” Kim says. “When you’re trying to focus on a very specific system, where you’re forced to use high-dimensional data but you don’t have a lot of it, can you still use these neural machine-learning techniques?”

    Neural networks are typically arranged into layers, each consisting of thousands of simple processing units, or nodes. Each node is connected to several nodes in the layers above and below. Data is fed into the bottom layer, which manipulates it and passes it to the next layer, which manipulates it and passes it to the next, and so on. During training, the connections between nodes are constantly readjusted until the output of the final layer consistently approximates the result of some computation.

    The problem with sparse, high-dimensional data is that for any given training example, most nodes in the bottom layer receive no data. It would take a prohibitively large training set to ensure that the network as a whole sees enough data to learn to make reliable generalizations.

    Artificial bottleneck

    The purpose of the MIT researchers’ network is to distill input vectors into much smaller vectors, all of whose numbers are meaningful for every input. To that end, the network has a middle layer with just a few nodes in it — only two, in some experiments.

    The goal of training is simply to configure the network so that its output is as close as possible to its input. If training is successful, then the handful of nodes in the middle layer must somehow represent most of the information contained in the input vector, but in a much more compressed form. Such systems, in which the output attempts to match the input, are called “autoencoders.”

    Autoencoding compensates for sparsity, but to handle scarcity, the researchers trained their network on not only recipes for producing particular materials, but also on recipes for producing very similar materials. They used three measures of similarity, one of which seeks to minimize the number of differences between materials — substituting, say, just one atom for another — while preserving crystal structure.

    During training, the weight that the network gives example recipes varies according to their similarity scores.

    Playing the odds

    In fact, the researchers’ network is not just an autoencoder, but what’s called a variational autoencoder. That means that during training, the network is evaluated not only on how well its outputs match its inputs, but also on how well the values taken on by the middle layer accord with some statistical model — say, the familiar bell curve, or normal distribution. That is, across the whole training set, the values taken on by the middle layer should cluster around a central value and then taper off at a regular rate in all directions.

    After training a variational autoencoder with a two-node middle layer on recipes for manganese dioxide and related compounds, the researchers constructed a two-dimensional map depicting the values that the two middle nodes took on for each example in the training set.

    Remarkably, training examples that used the same precursor chemicals stuck to the same regions of the map, with sharp boundaries between regions. The same was true of training examples that yielded four of manganese dioxide’s common “polymorphs,” or crystal structures. And combining those two mappings indicated correlations between particular precursors and particular crystal structures.

    “We thought it was cool that the regions were continuous,” Olivetti says, “because there’s no reason that that should necessarily be true.”

    Variational autoencoding is also what enables the researchers’ system to generate new recipes. Because the values taken on by the middle layer adhere to a probability distribution, picking a value from that distribution at random is likely to yield a plausible recipe.

    “This actually touches upon various topics that are currently of great interest in machine learning,” Jegelka says. “Learning with structured objects, allowing interpretability by and interaction with experts, and generating structured complex data — we integrate all of these.”

    “‘Synthesizability’ is an example of a concept that is central to materials science yet lacks a good physics-based description,” says Bryce Meredig, founder and chief scientist at Citrine Informatics, a company that brings big-data and artificial-intelligence techniques to bear on materials science research. “As a result, computational screens for new materials have been hamstrung for many years by synthetic inaccessibility of the predicted materials. Olivetti and colleagues have taken a novel, data-driven approach to mapping materials syntheses and made an important contribution toward enabling us to computationally identify materials that not only have exciting properties but also can be made practically in the laboratory.”

    The research was supported by the National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, the U.S. Office of Naval Research, the MIT Energy Initiative, and the U.S. Department of Energy’s Basic Energy Science Program.

    5:30p
    Recalculating time

    Whether it’s tracking brain activity in the operating room, seismic vibrations during an earthquake, or biodiversity in a single ecosystem over a million years, measuring the frequency of an occurrence over a period of time is a fundamental data analysis task that yields critical insight in many scientific fields. But when it comes to analyzing these time series data, researchers are limited to looking at pieces of the data at a time to assemble the big picture, instead of being able to look at the big picture all at once.

    In a new study, MIT researchers have developed a novel approach to analyzing time series data sets using a new algorithm, termed state-space multitaper time-frequency analysis (SS-MT). SS-MT provides a framework to analyze time series data in real-time, enabling researchers to work in a more informed way with large sets of data that are nonstationary, i.e. when their characteristics evolve over time. It allows researchers to not only quantify the shifting properties of data but also make formal statistical comparisons between arbitrary segments of the data.

    “The algorithm functions similarly to the way a GPS calculates your route when driving. If you stray away from your predicted route, the GPS triggers the recalculation to incorporate the new information,” says Emery Brown, the Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience, a member of the Picower Institute for Learning and Memory, associate director of the Institute for Medical Engineering and Science, and senior author on the study.

    “This allows you to use what you have already computed to get a more accurate estimate of what you’re about to compute in the next time period,” Brown says. “Current approaches to analyses of long, nonstationary time series ignore what you have already calculated in the previous interval leading to an enormous information loss.”

    In the study, Brown and his colleagues combined the strengths of two existing statistical analysis paradigms: state-space modeling and multitaper methods. State-space modeling is a flexible paradigm, which has been broadly applied to analyze data whose characteristics evolve over time. Examples include GPS, tracking learning, and performing speech recognition. Multitaper methods are optimal for computing spectra on a finite interval. When combined, the two methods bring together the local optimality properties of the multitaper approach with the ability to combine information across intervals with the state-space framework to produce an analysis paradigm that provides increased frequency resolution, increased noise reduction and formal statistical inference.

    To test the SS-MT algorithm, Brown and colleagues first analyzed electroencephalogram (EEG) recordings measuring brain activity from patients receiving general anesthesia for surgery. The SS-MT algorithm provided a highly denoised spectrogram characterizing the changes in power across frequencies over time. In a second example, they used the SS-MT’s inference paradigm to compare different levels of unconsciousness in terms of the differences in the spectral properties of these behavioral states.

    “The SS-MT analysis produces cleaner, sharper spectrograms,” says Brown. “The more background noise we can remove from a spectrogram, the easier it is to carry out formal statistical analyses.”

    Going forward, Brown and his team will use this method to investigate in detail the nature of the brain’s dynamics under general anesthesia. He further notes that the algorithm could find broad use in other applications of time-series analyses.

    “Spectrogram estimation is a standard analytic technique applied commonly in a number of problems such as analyzing solar variations, seismic activity, stock market activity, neuronal dynamics and many other types of time series,” says Brown. “As use of sensor and recording technologies becomes more prevalent, we will need better, more efficient ways to process data in real time. Therefore, we anticipate that the SS-MT algorithm could find many new areas of application.”

    Seong-Eun Kim, Michael K. Behr, and Demba E. Ba are lead authors of the paper, which was published online the week of Dec. 18 in Proceedings of the National Academy of Sciences PLUS. This work was partially supported by a National Research Foundation of Korea Grant, Guggenheim Fellowships in Applied Mathematics, the National Institutes of Health including NIH Transformative Research Awards, funds from Massachusetts General Hospital, and funds from the Picower Institute for Learning and Memory.

    11:59p
    New depth sensors could be sensitive enough for self-driving cars

    For the past 10 years, the Camera Culture group at MIT’s Media Lab has been developing innovative imaging systems — from a camera that can see around corners to one that can read text in closed books — by using “time of flight,” an approach that gauges distance by measuring the time it takes light projected into a scene to bounce back to a sensor.

    In a new paper appearing in IEEE Access, members of the Camera Culture group present a new approach to time-of-flight imaging that increases its depth resolution 1,000-fold. That’s the type of resolution that could make self-driving cars practical.

    The new approach could also enable accurate distance measurements through fog, which has proven to be a major obstacle to the development of self-driving cars.

    At a range of 2 meters, existing time-of-flight systems have a depth resolution of about a centimeter. That’s good enough for the assisted-parking and collision-detection systems on today’s cars.

    But as Achuta Kadambi, a  joint PhD student in electrical engineering and computer science and media arts and sciences and first author on the paper, explains, “As you increase the range, your resolution goes down exponentially. Let’s say you have a long-range scenario, and you want your car to detect an object further away so it can make a fast update decision. You may have started at 1 centimeter, but now you’re back down to [a resolution of] a foot or even 5 feet. And if you make a mistake, it could lead to loss of life.”

    At distances of 2 meters, the MIT researchers’ system, by contrast, has a depth resolution of 3 micrometers. Kadambi also conducted tests in which he sent a light signal through 500 meters of optical fiber with regularly spaced filters along its length, to simulate the power falloff incurred over longer distances, before feeding it to his system. Those tests suggest that at a range of 500 meters, the MIT system should still achieve a depth resolution of only a centimeter.

    Kadambi is joined on the paper by his thesis advisor, Ramesh Raskar, an associate professor of media arts and sciences and head of the Camera Culture group.

    Slow uptake

    With time-of-flight imaging, a short burst of light is fired into a scene, and a camera measures the time it takes to return, which indicates the distance of the object that reflected it. The longer the light burst, the more ambiguous the measurement of how far it’s traveled. So light-burst length is one of the factors that determines system resolution.

    The other factor, however, is detection rate. Modulators, which turn a light beam off and on, can switch a billion times a second, but today’s detectors can make only about 100 million measurements a second. Detection rate is what limits existing time-of-flight systems to centimeter-scale resolution.

    There is, however, another imaging technique that enables higher resolution, Kadambi says. That technique is interferometry, in which a light beam is split in two, and half of it is kept circulating locally while the other half — the “sample beam” — is fired into a visual scene. The reflected sample beam is recombined with the locally circulated light, and the difference in phase between the two beams — the relative alignment of the troughs and crests of their electromagnetic waves — yields a very precise measure of the distance the sample beam has traveled.

    But interferometry requires careful synchronization of the two light beams. “You could never put interferometry on a car because it’s so sensitive to vibrations,” Kadambi says. “We’re using some ideas from interferometry and some of the ideas from LIDAR, and we’re really combining the two here.”

    On the beat

    They’re also, he explains, using some ideas from acoustics. Anyone who’s performed in a musical ensemble is familiar with the phenomenon of “beating.” If two singers, say, are slightly out of tune — one producing a pitch at 440 hertz and the other at 437 hertz — the interplay of their voices will produce another tone, whose frequency is the difference between those of the notes they’re singing — in this case, 3 hertz.

    The same is true with light pulses. If a time-of-flight imaging system is firing light into a scene at the rate of a billion pulses a second, and the returning light is combined with light pulsing 999,999,999 times a second, the result will be a light signal pulsing once a second — a rate easily detectable with a commodity video camera. And that slow “beat” will contain all the phase information necessary to gauge distance.

    But rather than try to synchronize two high-frequency light signals — as interferometry systems must — Kadambi and Raskar simply modulate the returning signal, using the same technology that produced it in the first place. That is, they pulse the already pulsed light. The result is the same, but the approach is much more practical for automotive systems.

    “The fusion of the optical coherence and electronic coherence is very unique,” Raskar says. “We’re modulating the light at a few gigahertz, so it’s like turning a flashlight on and off millions of times per second. But we’re changing that electronically, not optically. The combination of the two is really where you get the power for this system.”

    Through the fog

    Gigahertz optical systems are naturally better at compensating for fog than lower-frequency systems. Fog is problematic for time-of-flight systems because it scatters light: It deflects the returning light signals so that they arrive late and at odd angles. Trying to isolate a true signal in all that noise is too computationally challenging to do on the fly.

    With low-frequency systems, scattering causes a slight shift in phase, one that simply muddies the signal that reaches the detector. But with high-frequency systems, the phase shift is much larger relative to the frequency of the signal. Scattered light signals arriving over different paths will actually cancel each other out: The troughs of one wave will align with the crests of another. Theoretical analyses performed at the University of Wisconsin and Columbia University suggest that this cancellation will be widespread enough to make identifying a true signal much easier.

    “I am excited about medical applications of this technique,” says Rajiv Gupta, director of the Advanced X-ray Imaging Sciences Center at Massachusetts General Hospital and an associate professor at Harvard Medical School. “I was so impressed by the potential of this work to transform medical imaging that we took the rare step of recruiting a graduate student directly to the faculty in our department to continue this work.”

    “I think it is a significant milestone in development of time-of-flight techniques because it removes the most stringent requirement in mass deployment of cameras and devices that use time-of-flight principles for light, namely, [the need for] a very fast camera,” he adds. “The beauty of Achuta and Ramesh’s work is that by creating beats between lights of two different frequencies, they are able to use ordinary cameras to record time of flight.”

    << Previous Day 2017/12/21
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org