MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Wednesday, January 23rd, 2019

    Time Event
    11:00a
    3Q: On the significance of Ultima Thule

    After nearly 20 years of planning and 13 years of flight, NASA’s New Horizons spacecraft traveled nearly 6.5 billion kilometers from Earth — the farthest distance yet for a space mission encounter— to visit the Kuiper Belt on the edge of our solar system. In July 2015, the spacecraft approached Pluto, returning extraordinary images and data about the dwarf planet and its moons. Shortly after, the trans-Neptunian object Ultima Thule — whose name means “beyond the known world,” for it is located 1.6 billion kilometers out from Pluto — was selected as the next object of interest. At its closest approach on Jan. 1, the New Horizons probe passed within 3,500 km of 2014 MU69, better known as Ultima Thule, and began transmitting data back to Earth, a process that will take nearly two years to complete. This is the first mission of its kind to explore this region in depth.

    New Horizons team members Alissa Earle and Richard Binzel were asked about the significance of the flyby and what it can tell us about the earliest days of our solar system. Earle is a postdoc within the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) and on the New Horizons Surface Composition Science Theme Team. Binzel is a co-investigator on the mission, science team liaison for both composition and geology, an EAPS professor of planetary sciences with an appointment in the Department of Aeronautics and Astronautics, a Margaret MacVicar Faculty Fellow, and an expert on asteroids and Pluto.

    Q: Why go to the outer reaches of our solar system, including Pluto and other Kuiper belt objects?

    A: Earle: Kuiper Belt objects are leftover remnants from when the solar system first formed. By studying them, we hope to gain insight into the history and formation of the solar system. Throughout the late 1980s and early 90s, studies of the Pluto system revealed it was an interesting, complex system, but the small sizes and distance from the sun make these objects difficult to investigate from Earth. The limitations of Earth-based observations generated more questions than they solved. This motivated the New Horizons mission to fly through the Pluto system and Kuiper Belt and study them in a level of detail not possible before.

    Now all of the data from the Pluto encounter have been sent back to Earth and undergone initial processing, but we are still working on interpreting it all. The Pluto system is very dynamic and complex, so we are still making sense of all the interesting and unexpected things New Horizons observed during that flyby. The data have revealed a diverse and geologically active world displaying a remarkably broad range of landforms, albedos [surface reflectivity], colors, compositions, and surface processes at play. In addition to the diversity across Pluto’s surface, the system also shows a great deal of diversity when comparing Pluto with its largest moon, Charon, as well as the four smaller satellites in the system.

    Binzel: It is a region of our solar system we have never explored, which has experienced very little change in its temperature and chemical conditions over the past 4 billion years, making it completely different from the environment and processes found on Earth. By seeing the extremes of planetary processes across our solar system, we gain a better understanding of our own world.

    Here, our realm for understanding how planets in our solar system work has been pushed to new limits. Rather than being a cold and dormant wasteland, we have found the largest Kuiper Belt objects like Pluto to be alive — in the sense that it is a geologically active world. Planetary processes like tectonics, convection, glaciation, haze formation, and possibly volcanism were found to be possible, even at the remote extremes of our solar system. 

    Q: Why, after the Pluto system, was 2014 MU69 selected as the second object for New Horizons to observe? What makes it so special?

    A: Earle: 2014 MU69 was discovered by a survey performed on the Hubble Space Telescope to look for Kuiper Belt objects near the path of New Horizons. Since the spacecraft has a finite fuel supply onboard, we needed to find an object that the spacecraft was able to easily get to. 2014 MU69’s orbit placed it very close to the path of the probe, making it an ideal next target.

    Given the diversity of the Pluto system and what we can learn about other Kuiper Belt objects from ground-based observations, it is a pretty safe bet that 2014 MU69 will have its own interesting and unique story to tell. Part of what makes this flyby so exciting is that we know very little about the object, and this time, the spacecraft flew very close to the surface of the object, with an approach distance of less than 2,200 miles, in comparison to 7,800 miles from Pluto. As the name suggests, it was discovered in 2014, so we have only been tracking it from the ground for a few years. Based on occultation measurements [observations of the object as it passes between the observer and a distant star], we learned in advance the object has a very irregular shape unlike Pluto, which is almost a perfect sphere. We also know it is a lot smaller than Pluto, with an estimated diameter of about 25-45 km compared to Pluto’s 2,377 km diameter. We also know it takes almost 300 years for it to orbit the sun.

    Binzel: From inception, the New Horizons mission was intended to explore Pluto and the Kuiper Belt. After Pluto, we knew the spacecraft would have limited fuel and limited navigating room. We focused our telescopic searches in that volume of reachable space, expecting to find one or more candidate objects. Indeed, we did with 2014 MU69 being the one most directly on the path and enabling the greatest opportunity for science return.

    Compared to Pluto, this flyby was much more focused, in the sense that we are examining one single object. At Pluto, we were studying both the planet and its moon Charon, as well as the full satellite system. This makes the 2014 MU69 flyby much more intense, and for decades to come, 2014 MU69 will be the poster child for what a Kuiper Belt object looks like.

    Q: Since the flyby, New Horizons has sent images and data revealing Ultima Thule to have a snowman or bowling pin-like shape. What does this tell us about Ultima Thule and the early solar system?

    A: Binzel: Ultima Thule's snowman shape is like a dream come true for how we think the earliest steps of planet formation start. Many small clumps, which we call planetesimals, begin to come together, eventually forming into a large planet like the Earth. However out in the Kuiper Belt, there is not very much material; most of what is left there is remnants of formation that never got very far. The snowman shape is like seeing the first embryo stage of a forming planet that never was able to grow any further. How fascinating to be able to see Ultima Thule as a snapshot of the beginning of our solar system at a time before Earth even existed.

    Earle: New Horizons is pioneering the exploration of the Kuiper Belt, the more we learn about the outer reaches of the solar system, the more it can help us learn about its history and provide more context for understanding the rest of the solar system. New Horizons’ flyby of 2014 MU69 provides a detailed look at a small Kuiper Belt object, which provides interesting comparisons with Pluto and its moons, as well as asteroids, which are similar in size but much closer to the sun — and thus warmer and unable to harbor some of the ices that are believed to be common in the Kuiper Belt.

    Ground-based observations also proved an important complement for the data being returned from New Horizons. New Horizons is able to take an extremely detailed look at just a handful of objects, whereas ground-based surveys have much less detail but can gather data on more objects to provide context for understanding the New Horizons data and how Pluto, its moons, and 2014 MU69 might compare to other Kuiper Belt objects.

    New Horizons is led by the Southwest Research Institute (SwRI) in Boulder, Colorado, and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. In addition to MIT, APL and SwRI, the New Horizons team includes Stanford University, Ball Aerospace Corp., NASA Goddard Space Flight Center and the Jet Propulsion Laboratory. The mission science team includes expertise from the above institutions, as well as Lowell Observatory, NASA Ames Research Center, Washington University in St. Louis, George Mason University, Johns Hopkins University, and the University of Colorado.

    11:59p
    A faster, more efficient cryptocurrency

    MIT researchers have developed a new cryptocurrency that drastically reduces the data users need to join the network and verify transactions — by up to 99 percent compared to today’s popular cryptocurrencies. This means a much more scalable network.

    Cryptocurrencies, such as the popular Bitcoin, are networks built on the blockchain, a financial ledger formatted in a sequence of individual blocks, each containing transaction data. These networks are decentralized, meaning there are no banks or organizations to manage funds and balances, so users join forces to store and verify the transactions.

    But decentralization leads to a scalability problem. To join a cryptocurrency, new users must download and store all transaction data from hundreds of thousands of individual blocks. They must also store these data to use the service and help verify transactions. This makes the process slow or computationally impractical for some.

    In a paper being presented at the Network and Distributed System Security Symposium next month, the MIT researchers introduce Vault, a cryptocurrency that lets users join the network by downloading only a fraction of the total transaction data. It also incorporates techniques that delete empty accounts that take up space, and enables verifications using only the most recent transaction data that are divided and shared across the network, minimizing an individual user’s data storage and processing requirements.

    In experiments, Vault reduced the bandwidth for joining its network by 99 percent compared to Bitcoin and 90 percent compared to Ethereum, which is considered one of today’s most efficient cryptocurrencies. Importantly, Vault still ensures that all nodes validate all transactions, providing tight security equal to its existing counterparts.

    “Currently there are a lot of cryptocurrencies, but they’re hitting bottlenecks related to joining the system as a new user and to storage. The broad goal here is to enable cryptocurrencies to scale well for more and more users,” says co-author Derek Leung, a graduate student in the Computer Science and Artificial Intelligence Laboratory (CSAIL).

    Joining Leung on the paper are CSAIL researchers Yossi Gilad and Nickolai Zeldovich, who is also a professor in the Department of Electrical Engineering and Computer Science (EECS); and recent alumnus Adam Suhl ’18.

    Vaulting over blocks

    Each block in a cryptocurrency network contains a timestamp, its location in the blockchain, and fixed-length string of numbers and letters, called a “hash,” that’s basically the block’s identification. Each new block contains the hash of the previous block in the blockchain. Blocks in Vault also contain up to 10,000 transactions — or 10 megabytes of data — that must all be verified by users. The structure of the blockchain and, in particular, the chain of hashes, ensures that an adversary cannot hack the blocks without detection.

    New users join cryptocurrency networks, or “bootstrap,” by downloading all past transaction data to ensure they’re secure and up to date. To join Bitcoin last year, for instance, a user would download 500,000 blocks totaling about 150 gigabytes. Users must also store all account balances to help verify new users and ensure users have enough funds to complete transactions. Storage requirements are becoming substantial, as Bitcoin expands beyond 22 million accounts.

    The researchers built their system on top of a new cryptocurrency network called Algorand — invented by Silvio Micali, the Ford Professor of Engineering at MIT — that’s secure, decentralized, and more scalable than other cryptocurrencies.

    With traditional cryptocurrencies, users compete to solve equations that validate blocks, with the first to solve the equations receiving funds. As the network scales, this slows down transaction processing times. Algorand uses a “proof-of-stake” concept to more efficiently verify blocks and better enable new users join. For every block, a representative verification “committee” is selected. Users with more money — or stake — in the network have higher probability of being selected. To join the network, users verify each certificate, not every transaction.

    But each block holds some key information to validate the certificate immediately ahead of it, meaning new users must start with the first block in the chain, along with its certificate, and sequentially validate each one in order, which can be time-consuming. To speed things up, the researchers give each new certificate verification information based on a block a few hundred or 1,000 blocks behind it — called a “breadcrumb.” When a new user joins, they match the breadcrumb of an early block to a breadcrumb 1,000 blocks ahead. That breadcrumb can be matched to another breadcrumb 1,000 blocks ahead, and so on.

    “The paper title is a pun,” Leung says. “A vault is a place where you can store money, but the blockchain also lets you ‘vault’ over blocks when joining a network. When I’m bootstrapping, I only need a block from way in the past to verify a block way in the future. I can skip over all blocks in between, which saves us a lot of bandwidth.”

    Divide and discard

    To reduce data storage requirements, the researchers designed Vault with a novel “sharding” scheme. The technique divides transaction data into smaller portions — or shards — that it shares across the network, so individual users only have to process small amounts of data to verify transactions.

    To implement sharing in a secure way, Vault uses a well-known data structure called a binary Merkle tree. In binary trees, a single top node branches off into two “children” nodes, and those two nodes each break into two children nodes, and so on.

    In Merkle trees, the top node contains a single hash, called a root hash. But the tree is constructed from the bottom, up. The tree combines each pair of children hashes along the bottom to form their parent hash. It repeats that process up the tree, assigning a parent node from each pair of children nodes, until it combines everything into the root hash. In cryptocurrencies, the top node contains a hash of a single block. Each bottom node contains a hash that signifies the balance information about one account involved in one transaction in the block. The balance hash and block hash are tied together.

    To verify any one transaction, the network combines the two children nodes to get the parent node hash. It repeats that process working up the tree. If the final combined hash matches the root hash of the block, the transaction can be verified. But with traditional cryptocurrencies, users must store the entire tree structure.

    With Vault, the researchers divide the Merkle tree into separate shards assigned to separate groups of users. Each user account only ever stores the balances of the accounts in its assigned shard, as well as root hashes. The trick is having all users store one layer of nodes that cuts across the entire Merkle tree. When a user needs to verify a transaction from outside of their shard, they trace a path to that common layer. From that common layer, they can determine the balance of the account outside their shard, and continue validation normally.

    “Each shard of the network is responsible for storing a smaller slice of a big data structure, but this small slice allows users to verify transactions from all other parts of network,” Leung says.

    Additionally, the researchers designed a novel scheme that recognizes and discards from a user’s assigned shard accounts that have had zero balances for a certain length of time. Other cryptocurrencies keep all empty accounts, which increase data storage requirements while serving no real purpose, as they don’t need verification. When users store account data in Vault, they ignore those old, empty accounts.

    << Previous Day 2019/01/23
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org