MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Monday, January 28th, 2019

    Time Event
    9:00a
    The gift of light, through science and service

    Pawan Sinha, a professor of vision and computational neuroscience in the Department of Brain and Cognitive Sciences, first met Poonam when the girl was 13 years old. She lived in a remote village far from the urban bustle of Delhi, the second most-populous city in India. Poonam had grown up among lush trees and straw-thatched roofs and white cows with pointy horns grazing languidly along the dirt-packed road. But she had never seen any of it. Like many of the patients Sinha has worked with since he began Project Prakash, Poonam had been blind since birth due to dense cataracts, a treatable form of blindness more often seen in elderly patients.

    Project Prakash, from the Sanskrit word for light, is a nonprofit organization that provides surgeries to congenitally blind children in India, and observes them during recovery to track the development of sight in the brain. Volunteers from Project Prakash travel to remote villages with limited access to health care to screen blind children and, if they are eligible, enroll them in the program.

    Sinha first conceived of Project Prakash in 2002 while visiting his father in Delhi. He encountered two young siblings, living in poverty on the city streets, both blinded by treatable cataracts.

    “This opened my eyes to the pervasiveness of childhood blindness in India, and more broadly in the developing world,” says Sinha. “Many children have treatable forms of blindness, but they stay blind because of lack of access to medical facilities, lack of knowledge of treatment options, and lack of financial resources to pursue medical care. These children languish in their blindness and lead difficult lives with little education, almost no prospects for employment and sadly, in many cases they die very young.”

    Volunteers transported Poonam from her village to Dr. Shroff’s Charity Eye Hospital in Delhi, where, after a full examination, she received cataract removal surgery. The very next day, the bandages came off. During Poonam’s post-operative check-up, the caregiver held up her fingers both close to her face and from a distance and asked how many. Poonam answered correctly. She could see.

    “The name Prakash reflects our immediate goal to bring light into the lives of children who suffer from blindness,” says Sinha. “In meeting this humanitarian need, as a neuroscientist I realized we had an scientific opportunity. With surgery, we can transition a child from blindness to sight in less than an hour and from the very moment the child’s bandages are removed, you have a ringside seat into the process of visual development.”

    The call to action

    According to data collected by Project Prakash, current estimates suggest that between 200,000 and 700,000 children suffer from potentially treatable forms of blindness, such as cataracts or corneal opacities. Only 50 percent of these children are expected to survive into adulthood, and many suffer physical or sexual abuse at some point in their lives.

    Compelled to act, Sinha quickly realized he wanted to create a lasting impact beyond a one-time donation to cover the cost of cataract surgeries for individual children. From the perspective of a vision researcher, Sinha felt he was in a unique position to tackle this problem on a larger scale. He recognized an opportunity for synergy between this profound humanitarian need and a longstanding neuroscientific question he was interested in as a researcher. It would also address a common problem that arises when studying visual development.

    “Until now, almost all the approaches we had to observe visual development happening in real-time was by working with infants, and they are notoriously difficult to work with experimentally,” says Sinha. “Not only are they unable to follow instructions or report out, their brains have many developmental processes progressing simultaneously, so it is hard to isolate one from the others. Visual development proceeds very rapidly, so we have a very short window to work with before infants become very sophisticated visual perceivers.”

    And that is one of the key scientific benefits of Project Prakash. Older blind children, like Poonam and the kids Sinha met while visiting with his father, have physiologically mature brains, but have not yet been exposed to patterns in the visual world. This makes it much easier to identify the processes of visual development as they unfold as part of the follow-up care. Using functional MRI data acquired from post-operative Prakash patients imaged at various points throughout their recovery, Sinha and the rest of the Project Prakash team observe how a child’s brain incorporates new information into existing structural and functional organization. These studies then inform Sinha’s MIT lab work on computational models of visual learning.

    Prakash patients range from children as young as 6 to young adults in their mid-20s; if a young person presents to the Project Prakash team with a treatable form of blindness, they won’t be turned away. A few days after surgery, children begin visual acuity tests using the standard eye charts anyone with glasses would be familiar with. While no child winds up with perfect vision, patients gain significant functional vision, and Project Prakash provides glasses to correct their sight further.

    After securing an initial round of funding from the National Institutes of Health, Sinha officially launched Project Prakash with three of his students in 2004. Since then, Sinha has added 20 team members and together they have provided 500 surgeries and 43,000 ophthalmic screenings to children in need.

    A ringside seat

    Since Sinha established Project Prakash, the humanitarian work has become inextricably linked to the work in his research laboratory at MIT. Many of his lab members are also involved with Project Prakash and pursue a number of research questions related to data gathered from its patients. Typically, the research team travels to India twice a year to volunteer with the humanitarian efforts of the program, interact with the patients, and of course, to gather data.

    Conventional wisdom in childhood blindness suggests that older children should not see significant gains post-surgery, since their brain’s visual machinery should be set. However, in one of his first key scientific findings enabled by Project Prakash, Sinha found that even young adults can make significant gains in visual function after surgical intervention.

    Members of the Sinha laboratory at MIT have also found new avenues of research probing the development of different visual skills in the Prakash children. For example, Sruti Raja, a research associate in the Sinha laboratory, is working on a project that looks at sensitivity to visual motion before and after surgery. Another ongoing study, led by Sharon Gilad-Gutnick, a staff research scientist in Sinha’s lab and Project Prakash team member, looks at how patients learn to translate what they see into drawings.

    “How are they able to recognize and then copy or draw from memory basic shapes?” says Gilad-Gutnick, who has worked with Sinha since she was an undergraduate. “What does that tell us about their internal representation of these shapes, and of objects in general? We are looking at that as a function of time after sight onset.”

    Another study, published in the Proceedings of the National Academy of Sciences on Oct. 30, details how some Prakash patients struggle with the task of recognizing faces. Newborn babies have notoriously bad eyesight, with an average visual acuity of 20/600. According to the American Optometric Association, good visual acuity refers to the ability to see sharply and clearly. Normal visual acuity is referred to as 20/20 vision, which means that you can see patterns as clearly at 20 feet as an average person at the same distance. In this paper, the researchers hypothesize that poor eyesight has an important function in infant visual development, acting as a visual low-pass filter. The filter induces the brain to develop visual processing strategies that emphasize the gestalt rather than local details, or as Sinha describes it, the ‘forest from the trees.”

    The Project Prakash patients miss out on this benefit of poor initial acuity, which leads to difficulty organizing and recognizing the spatial relationships of distinct faces. In the paper, Sinha and the team refer to this as the high-initial acuity (HIA) hypothesis. To test this hypothesis, Sinha’s research team used a deep learning algorithm designed to mimic the many layers of the human visual system. They fed the algorithm series of images simulating different visual learning scenarios, from only blurred images to only high resolution images to a mix of the two. The series that led to the most robust recognition performance began with blurred images and progressively increased in resolution — echoing the progression in normal human development and consistent with the HIA hypothesis.

    These results have significant clinical implications. Post-operative outcomes for cases of congenital cataracts can potentially be improved by blurring visual stimuli to mimic the acuity of a newborn. By gradually increasing the resolution of visual stimuli, the regimen may provide the Prakash children’s brains the inducement to encode larger scale structures in images and improve subsequent recognition performance.

    While the Project Prakash children are a unique subset of individuals, lessons learned from them can be applied to brain development in general. The work reported in the PNAS paper illustrates how studies of newly sighted children can inform our thinking of normal visual development, and also guide the creation of more powerful computational strategies for visual recognition.

    “We are essentially providing a possible answer to why normal visual development unfolds in the way that it does,” Sinha says. “It's not just a limitation imposed upon us by immaturity of the retina, but it might actually have adaptive value.”

    Looking beyond vision, this idea could potentially provide insight into auditory development as well; the muffling of sound by the amniotic sac may have adaptive significance akin to the blurring of images in early development.

    Looking ahead

    While Sinha appreciates the opportunity to tackle these scientific questions, he doesn’t lose sight of the transformative impact Project Prakash has on real lives. In the days following Poonam’s surgery, Project Prakash staff watched her blossom as she healed. She created artwork, she made up dance moves with her caregiving team, and she even took it upon herself to lead another blind patient receiving care at the hospital around the hallways. In addition to this newfound sense of independence and self-confidence, Poonam’s follow-up exams showed a marked improvement in visual abilities.

    Poonam’s outcome was not an outlier for Project Prakash participants. Even though the speed of healing and level of visual acuity varies from patient to patient, most report significant improvement both to their vision and their quality of life. Sinha and his team surveyed a group of 60 patients and their families to gauge how their experience participating in Project Prakash improved their sense of independence, their ability to perform in school, and their relationships with friends, family and their communities.

    “Across all of these dimensions, they reported big gains, and both patients and their families are uniformly ecstatic about the outcomes of the treatment, says Sinha. “When you take a step back to look at the whole picture, we have made a relatively small contribution by providing this routine surgery. But the consequence of that surgery is so profound for the child and for their family that the families think of us as more. It’s incredibly rewarding.”

    But Prakash patients and their families are not the only ones who have been impacted by this work.

    “In general, scientific research can be very frustrating, ambiguous and at times, difficult. But when you get to work so closely with children in need and you get to have that real-world impact in addition to pursuing these interesting questions, the motivation is huge,” says Gilad-Gutnik. “As scientists, I think we need to find more ways to work at this intersection of basic science and humanitarian need, and I think that neuroscience and the study of behavior presents a lot of unique opportunities to do that.”

    Looking ahead, Project Prakash aims to improve patient outcomes even further through their newest initiative: a year-long residential educational program where patients who have fallen behind in school due to their visual impairment can receive specialized instruction, bringing them to an age-appropriate grade level before integrating them in local schools. They also intend to track how learning and education affects brain structure.

    For Sinha, though his experience with Project Prakash has led to many immeasurably meaningful moments, meeting the Prakash patient named Poonam and following her success through the program hit especially close to home. His older sister was a doctor before her untimely death at age 25, and she was one of Sinha’s main sources of inspiration when he established Project Prakash. Her name was also Poonam.

    “We are all shaped by the people we meet, and especially by the ones we admire,” says Sinha. “Seeing my sister’s devotion as a doctor to helping those in need, even at great cost to her own health, affected me greatly. Project Prakash is a small tribute to her memory, and the future of many more Poonams.”

    11:00a
    Converting Wi-Fi signals to electricity with new 2-D materials

    Imagine a world where smartphones, laptops, wearables, and other electronics are powered without batteries. Researchers from MIT and elsewhere have taken a step in that direction, with the first fully flexible device that can convert energy from Wi-Fi signals into electricity that could power electronics.

    Devices that convert AC electromagnetic waves into DC electricity are known as “rectennas.” The researchers demonstrate a new kind of rectenna, described in a study appearing in Nature today, that uses a flexible radio-frequency (RF) antenna that captures electromagnetic waves — including those carrying Wi-Fi — as AC waveforms.

    The antenna is then connected to a novel device made out of a two-dimensional semiconductor just a few atoms thick. The AC signal travels into the semiconductor, which converts it into a DC voltage that could be used to power electronic circuits or recharge batteries.

    In this way, the battery-free device passively captures and transforms ubiquitous Wi-Fi signals into useful DC power. Moreover, the device is flexible and can be fabricated in a roll-to-roll process to cover very large areas.

    “What if we could develop electronic systems that we wrap around a bridge or cover an entire highway, or the walls of our office and bring electronic intelligence to everything around us? How do you provide energy for those electronics?” says paper co-author Tomás Palacios, a professor in the Department of Electrical Engineering and Computer Science and director of the MIT/MTL Center for Graphene Devices and 2D Systems in the Microsystems Technology Laboratories. “We have come up with a new way to power the electronics systems of the future — by harvesting Wi-Fi energy in a way that’s easily integrated in large areas — to bring intelligence to every object around us.”

    Promising early applications for the proposed rectenna include powering flexible and wearable electronics, medical devices, and sensors for the “internet of things.” Flexible smartphones, for instance, are a hot new market for major tech firms. In experiments, the researchers’ device can produce about 40 microwatts of power when exposed to the typical power levels of Wi-Fi signals (around 150 microwatts). That’s more than enough power to light up an LED or drive silicon chips.

    Another possible application is powering the data communications of implantable medical devices, says co-author Jesús Grajal, a researcher at the Technical University of Madrid. For example, researchers are beginning to develop pills that can be swallowed by patients and stream health data back to a computer for diagnostics.

    “Ideally you don’t want to use batteries to power these systems, because if they leak lithium, the patient could die,” Grajal says. “It is much better to harvest energy from the environment to power up these small labs inside the body and communicate data to external computers.”

    All rectennas rely on a component known as a “rectifier,” which converts the AC input signal into DC power. Traditional rectennas use either silicon or gallium arsenide for the rectifier. These materials can cover the Wi-Fi band, but they are rigid. And, although using these materials to fabricate small devices is relatively inexpensive, using them to cover vast areas, such as the surfaces of buildings and walls, would be cost-prohibitive. Researchers have been trying to fix these problems for a long time. But the few flexible rectennas reported so far operate at low frequencies and can’t capture and convert signals in gigahertz frequencies, where most of the relevant cell phone and Wi-Fi signals are.

    To build their rectifier, the researchers used a novel 2-D material called molybdenum disulfide (MoS2), which at three atoms thick is one of the thinnest semiconductors in the world. In doing so, the team leveraged a singular behavior of MoS2: When exposed to certain chemicals, the material’s atoms rearrange in a way that acts like a switch, forcing a phase transition from a semiconductor to a metallic material. The resulting structure is known as a Schottky diode, which is the junction of a semiconductor with a metal.

    “By engineering MoS2 into a 2-D semiconducting-metallic phase junction, we built an atomically thin, ultrafast Schottky diode that simultaneously minimizes the series resistance and parasitic capacitance,” says first author and EECS postdoc Xu Zhang, who will soon join Carnegie Mellon University as an assistant professor.

    Parasitic capacitance is an unavoidable situation in electronics where certain materials store a little electrical charge, which slows down the circuit. Lower capacitance, therefore, means increased rectifier speeds and higher operating frequencies. The parasitic capacitance of the researchers’ Schottky diode is an order of magnitude smaller than today’s state-of-the-art flexible rectifiers, so it is much faster at signal conversion and allows it to capture and convert up to 10 gigahertz of wireless signals.

    “Such a design has allowed a fully flexible device that is fast enough to cover most of the radio-frequency bands used by our daily electronics, including Wi-Fi, Bluetooth, cellular LTE, and many others,” Zhang says.

    The reported work provides blueprints for other flexible Wi-Fi-to-electricity devices with substantial output and efficiency. The maximum output efficiency for the current device stands at 40 percent, depending on the input power of the Wi-Fi input. At the typical Wi-Fi power level, the power efficiency of the MoS2 rectifier is about 30 percent. For reference, today’s rectennas made from rigid, more expensive silicon or gallium arsenide achieve around 50 to 60 percent.

    There are 15 other paper co-authors from MIT, Technical University of Madrid, the Army Research Laboratory, Charles III University of Madrid, Boston University, and the University of Southern California.

    The team is now planning to build more complex systems and improve efficiency. The work was made possible, in part, by a collaboration with the Technical University of Madrid through the MIT International Science and Technology Initiatives (MISTI). It was also partially supported by the Institute for Soldier Nanotechnologies, the Army Research Laboratory, the National Science Foundation’s Center for Integrated Quantum Materials, and the Air Force Office of Scientific Research.

    11:50a
    Surprising electronic disorder in a copper oxide-based ceramic

    Cuprates, a class of copper-oxide ceramics that share a common building block of copper and oxygen atoms in a flat square lattice, have been studied for their ability to be superconducting at extremely high temperatures. In their pristine state, however, they are a special kind of insulator (a material that does not readily conduct electricity) known as a Mott insulator. 

    When electrical charge carriers — either electrons or the lack of electrons, known as "holes" — are added to an insulator in a process called doping, the insulator may become a metal, which readily conducts electricity, or a semiconductor, which can conduct electricity depending on the environment. Cuprates, however, behave neither like a normal insulator nor like a normal metal because of strong interactions between their electrons. To avoid the large energy cost arising from these interactions, the electrons spontaneously organize in a collective state where the motion of each particle is tied to all the other ones. 

    One example is the superconducting state, where electrons move in unison and drift with zero net friction when a potential is applied, a zero-resistance state which is a defining characteristic of a superconductor. Another collective electronic state is a “charge density wave,” a term coined from the wave-like modulation in the density of electrons, in which electrons “freeze” into periodic and static patterns, at the same time hindering electron flow. This state is  antagonistic to the superconducting state, and, therefore, important to study and understand. In cuprates, charge-density-waves prefer to align to the atomic rows of copper and oxygen atoms that make up the underlying crystal structure, with wave “‘crests” occurring every three to five unit cells, depending on the material and doping level.

    Using a technique known as resonant X-ray scattering to study these charge-density-waves in two different cuprate compounds, neodymium copper oxide (Nd2CuO4 or NCO) and praseodymium copper oxide (Pr2CuO4 or PCO) doped with extra electrons, MIT researchers made an unexpected discovery. Their work revealed a phase of the material where the electrons fall into a disordered, or “glassy,” arrangement, dubbed a “Wigner glass.” The results were recently published in a paper in Nature Physics.

    Resonant X-ray scattering is a recently developed diffraction technique in which crystallography is performed on electrons rather than exclusively on the atoms as in conventional X-ray diffraction. “In the limit of low concentration of doped electrons, we observed a completely new and unexpected form of electronic phase which is neither a superfluid nor a crystal, but it rather has the characteristics of a Wigner glass. In this phase, the electrons form a collective state without any orientational preference,” says the paper’s senior author Riccardo Comin, assistant professor of physics at MIT. Such an amorphous glass of electrons is completely unprecedented in this family of materials, he adds. 

    This phenomenon emerges only in a narrow window of electron doping. “Intriguingly, this exotic new state only exists in a small region of the electronic phase diagram of this material, and when more electrons are doped in the [copper oxide] planes, a more conventional electronic crystal is recovered, whose ripples align to the crystallographic axes of the underlying atomic lattice,” Min Gu Kang, the paper’s lead author, explains.

    The MIT team, consisting of Comin, graduate student Kang, and postdoc Jonathan Pelliciari, designed the project and led the majority of experiments. Their research was made possible by the contributions of researchers at various institutions and facilities worldwide. Resonant X-ray scattering measurements were performed at multiple synchrotron facilities including the Berlin Electron Storage Ring in Germany, the Canadian Light Source in Saskatoon, Saskatchewan, Canada, and the Advanced Light Source, in Berkeley, California. The copper-oxide thin film samples were grown at NTT Basic Research Laboratories in Japan. Theoretical analysis was developed by researchers at the Indian Institute of Science in India.

    Comin notes that the proposed theory explains the role of the electronic band structure in governing the periodic spacing and lack of orientational preference of the density waves as a function of doping level in this material. “Our theory suggests that these electronic ripples are initially formed with irregular shapes and are likely nucleated around defects or impurities in the material,” Comin says. “When the density of carriers increases, the electrons manage to find a more highly-ordered arrangement that minimizes the total energy of the system, thereby restoring the more conventional charge density waves that have been observed universally in all families of copper-oxide superconductors.”

    “I was completely blown away by Riccardo's results on NCO and PCO,” says Peter Abbamonte, Fox Family Professor in Engineering at the University of Illinois at Urbana-Champaign, who developed the resonant soft X-ray scattering technique. Noting that charge density wave (CDW) order in cuprates has been at the center of the field for well over a decade, Abbamonte, who was not involved in this research, explains that the previous understanding has been that the CDW order is pinned to the crystal lattice, meaning the charge density wave must point in either of two perpendicular directions, but nowhere in between. This conventional wisdom is built on two decades of resonant scattering and scanning tunneling microscopy experiments that have always found this to be the case, he notes.

    Comin’s research on these particular electron-doped cuprates showed that during the glassy phase the charge order can point in any direction, independent of the crystal lattice it lives in. “The more precise statement is that the CDW order parameter is not Ising-like (that is, taking only discrete values, in this case two: x or y), as has always been assumed, but is more like an X-Y order parameter (that is, free to choose any value on a continuous range, such as all directions between x and y as is the case here) that is only weakly influenced by the crystal,” Abbamonte says.
     
    “It is going to take some time for the community to fully digest this realization and its implications for understanding the relevance of CDW order,” Abbamonte adds. “What is clear is Riccardo's paper is going to lead to a serious re-reckoning of the rules of the game, and in this sense is a major advance for the field.” 

    Superconductors have an immense, largely untapped potential for transformative applications such as quantum computing, lossless energy transport, magnetic sensing and medical diagnostic imaging, and plasma and nuclear fusion power technologies.

    “Overall, our study has revealed yet another manifestation of the exquisite quantum character of charge carriers in high-temperature superconductors, which ultimately arises from the nature of the electronic interactions,” Comin says. “The detailed behavior of electrons uncovered in this work provides new insights on how high-temperature superconductivity is born out of a Mott insulator, and promises to bridge a gap between regions of the phase diagram with very contrasting phenomenologies.” 

    2:59p
    Want to squelch fake news? Let the readers take charge

    Would you like to rid the internet of false political news stories and misinformation? Then consider using — yes — crowdsourcing.

    That’s right. A new study co-authored by an MIT professor shows that crowdsourced judgments about the quality of news sources may effectively marginalize false news stories and other kinds of online misinformation.

    “What we found is that, while there are real disagreements among Democrats and Republicans concerning mainstream news outlets, basically everybody — Democrats, Republicans, and professional fact-checkers — agree that the fake and hyperpartisan sites are not to be trusted,” says David Rand, an MIT scholar and co-author of a new paper detailing the study’s results.

    Indeed, using a pair of public-opinion surveys to evaluate of 60 news sources, the researchers found that Democrats trusted mainstream media outlets more than Republicans do — with the exception of Fox News, which Republicans trusted far more than Democrats did. But when it comes to lesser-known sites peddling false information, as well as “hyperpartisan” political websites (the researchers include Breitbart and Daily Kos in this category), both Democrats and Republicans show a similar disregard for such sources.

    Trust levels for these alternative sites were low overall. For instance, in one survey, when respondents were asked to give a trust rating from 1 to 5 for news outlets, the result was that hyperpartisan websites received a trust rating of only 1.8 from both Republicans and Democrats; fake news sites received a trust rating of only 1.7 from Republicans and 1.9 from Democrats. 

    By contrast, mainstream media outlets received a trust rating of 2.9 from Democrats but only 2.3 from Republicans; Fox News, however, received a trust rating of 3.2 from Republicans, compared to 2.4 from Democrats.

    The study adds a twist to a high-profile issue. False news stories have proliferated online in recent years, and social media sites such as Facebook have received sharp criticism for giving them visibility. Facebook also faced pushback for a January 2018 plan to let readers rate the quality of online news sources. But the current study suggests such a crowdsourcing approach could work well, if implemented correctly.

    “If the goal is to remove really bad content, this actually seems quite promising,” Rand says. 

    The paper, “Fighting misinformation on social media using crowdsourced judgments of news source quality,” is being published in Proceedings of the National Academy of Sciences this week. The authors are Gordon Pennycook of the University of Regina, and Rand, an associate professor in the MIT Sloan School of Management.

    To promote, or to squelch?

    To perform the study, the researchers conducted two online surveys that had roughly 1,000 participants each, one on Amazon’s Mechanical Turk platform, and one via the survey tool Lucid. In each case, respondents were asked to rate their trust in 60 news outlets, about a third of which were high-profile, mainstream sources.

    The second survey’s participants had demographic characteristics resembling that of the country as a whole — including partisan affiliation. (The researchers weighted Republicans and Democrats equally in the survey to avoid any perception of bias.) That survey also measured the general audience’s evaluations against a set of judgments by professional fact-checkers, to see whether the larger audience’s judgments were similar to the opinions of experienced researchers.

    But while Democrats and Republicans regarded prominent news outlets differently, that party-based mismatch largely vanished when it came to the other kinds of news sites, where, as Rand says, “By and large we did not find that people were really blinded by their partisanship.”

    In this vein, Republicans trusted MSNBC more than Breitbart, even though many of them regarded it as a left-leaning news channel. Meanwhile, Democrats, although they trusted Fox News less than any other mainstream news source, trusted it more than left-leaning hyperpartisan outlets (such as Daily Kos).

    Moreover, because the respondents generally distrusted the more marginal websites, there was significant agreement among the general audience and the professional fact-checkers. (As the authors point out, this also challenges claims about fact-checkers having strong political biases themselves.)

    That means the crowdsourcing approach could work especially well in marginalizing false news stories — for instance by building audience judgments into an algorithm ranking stories by quality. Crowdsourcing would probably be less effective, however, if a social media site were trying to build a consensus about the very best news sources and stories.

    Where Facebook failed: Familiarity?

    If the new study by Rand and Pennycook rehabilitates the idea of crowdsourcing news source judgments, their approach differs from Facebook’s stated 2018 plan in one crucial respect. Facebook was only going to let readers who were familiar with a given news source give trust ratings.

    But Rand and Pennycook conclude that this method would indeed build bias into the system, because people are more skeptical of news sources they have less familiarity with — and there is likely good reason why most people are not acquainted with many sites that run fake or hyperpartisan news.

     “The people who are familiar with fake news outlets are, by and large, the people who like fake news,” Rand says. “Those are not the people that you want to be asking whether they trust it.”

    Thus for crowdsourced judgments to be a part of an online ranking algorithm, there might have to be a mechanism for using the judgments of audience members who are unfamiliar with a given source. Or, better yet, suggest, Pennycook and Rand, showing users sample content from each news outlet before having the users produce trust ratings.

    For his part, Rand acknowledges one limit to the overall generalizability of the study: The dymanics could be different in countries that have more limited traditions of freedom of the press.

    “Our results pertain to the U.S., and we don’t have any sense of how this will generalize to other countries, where the fake news problem is more serious than it is here,” Rand says.

    All told, Rand says, he also hopes the study will help people look at America’s fake news problem with something less than total despair.

    “When people talk about fake news and misinformation, they almost always have very grim conversations about how everything is terrible,” Rand says. “But a lot of the work Gord [Pennycook] and I have been doing has turned out to produce a much more optimistic take on things.”

    Support for the study came from the Ethics and Governance of Artifical Intelligence Initiative of the Miami Foundation, the Social Sciences and Humanities Research Council of Canada, and the Templeton World Charity Foundation.

    << Previous Day 2019/01/28
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org