MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Friday, February 15th, 2019

    Time Event
    12:00a
    From summer research program to PhD dissertation

    One of the most important aspects of MIT’s educational mission is preparing students to be effective members of their scientific and technological communities. For Raspberry Simpson, that process began when she was a 17-year-old participant in the MIT Summer Research Program (MSRP); it is reaching fruition today as she pursues her doctorate in nuclear science and develops novel diagnostics for inertial confinement fusion and high-energy-density physics experiments at some of the country’s most advanced research facilities.

    In 2010, Simpson (then a student in Bard College’s Early College program) worked with MIT physics professors Lindley Winslow and Janet Conrad at the Laboratory for Nuclear Science. In addition to their academic work in the MSRP, she recalls, “they put it into my mind subconsciously that MIT was a place for me, that I could do science and be accepted in this space. I can’t emphasize enough how important that is.”

    Shortly afterward, Simpson transferred to Columbia University to complete her bachelor’s degree in applied physics. During that time she took a year off from study to assist Winslow with development of a neutrino detector, and work on astrophysics experiments at Los Alamos National Laboratory, where she received important mentoring. 

    “I really enjoyed the national laboratory environment; it’s really special to have that many scientists in one place working towards a similar goal,” says Simpson.

    In large part because of her experience in MSRP, which seeks to motivate members of under-represented groups to pursue graduate education, Simpson applied to the MIT Department of Nuclear Science and Engineering (NSE) for her PhD studies. “I felt I had a science family here,” she says. “Also, Mareena Robinson, who did the MSRP at the same time I did, was in the PhD program. Having representation from women, especially black women, in the department was a huge factor in me wanting to come back.”

    Today, a primary focus of Simpson’s is working on developing diagnostics that allow the assessment of the performance inertial confinement fusion (ICF). There has been a recent surge in optimism about fusion becoming a practical, plentiful, carbon-free energy source, with increased private funding and several private companies (including MIT spinout Commonwealth Fusion Systems) announcing roadmaps for demonstration fusion power plants by the mid-2020s.

    To achieve that, ICF compresses pellets of hydrogen isotopes deuterium and tritium to such extremely high temperatures and densities that the isotope nuclei fuse. This creates a heavier nucleus while releasing large quantities of heat in the form of neutrons. Work to date has been promising, but researchers have struggled to extract the full measure of energy from the process.

    “The problem we’ve noticed is that there are lots of asymmetries in the implosion; if you think about trying to compress a basketball to the size of a pea, it would be difficult to keep it perfectly spherical,” explains Simpson. “That leads to inefficiencies.”

    Simpson is working to develop new ways of measuring and characterizing these asymmetries during the implosion, using a pair of orthogonally positioned charged-particle instruments to measure the spectra of deuterons (deuterium nuclei) scattered during the process. The approach allows inference of variations in density and symmetry.

    “Fusion is very complex, and you need as many diagnostics and as much information as you can get to understand the dynamics of these experiments,” notes Simpson, whose role at MIT’s Plasma Science and Fusion Center also connects her to the center’s research into magnetic-confinement fusion, the other leading potential path to energy production.

    The project is supported by grants from the U.S. Department of Energy (DoE) and the University of Rochester’s Laboratory for Laser Energetics (LLE); Simpson has worked on several projects at the LLE’s Omega laser facility, a key research resource for fusion and other high-temperature high-density phenomena.

    In addition, Simpson was chosen this year for the inaugural class of the DoE’s National Nuclear Security Laboratory Residency Graduate Fellowships, which support long-term security-related study and research at national labs. She will build a charged-particle spectrometer for a group under Tammy Ma at the National Ignition Facility at Lawrence Livermore National Laboratory, which is using a high-intensity petawatt-class laser to generate highly accelerated ions for use in radiography of a variety of targets.

    Simpson recently passed her NSE qualifying examinations, and will be turning her attention to her dissertation, writing about the two pieces of work mentioned above, and an additional project that utilizes knock-on deuterons for imaging of ICF asymmetries.

    “Our group in the High Energy Density Physics Division has lots of fingers in lots of pies, like fusion, high energy density science, and astrophysics, so my dissertation will include multiple projects,” says Simpson. The group recently received a prestigious Center of Excellence award from the National Nuclear Security Administration

    Looking ahead, Simpson says she would enjoy working at a national laboratory, because of both the research culture and labs’ role in cultivating new generations of scientists. “The national labs have a deep understanding of the value of students, and they wouldn’t exist without continued stewardship of student talent, and I’d like to position myself in that environment. I’m not mentoring yet, but eventually I would like to give back in that way.”

    She’s also a big fan of the 32-year-old MSRP, and of Institute efforts to make the science and engineering communities more inclusive. 

    11:00a
    Predicting sequence from structure

    One way to probe intricate biological systems is to block their components from interacting and see what happens. This method allows researchers to better understand cellular processes and functions, augmenting everyday laboratory experiments, diagnostic assays, and therapeutic interventions. As a result, reagents that impede interactions between proteins are in high demand. But before scientists can rapidly generate their own custom molecules capable of doing so, they must first parse the complicated relationship between sequence and structure.

    Small molecules can enter cells easily, but the interface where two proteins bind to one another is often too large or lacks the tiny cavities required for these molecules to target. Antibodies and nanobodies bind to longer stretches of protein, which makes them better suited to hinder protein-protein interactions, but their large size and complex structure render them difficult to deliver and unstable in the cytoplasm. By contrast, short stretches of amino acids, known as peptides, are large enough to bind long stretches of protein while still being small enough to enter cells.

    The Keating lab at the MIT Department of Biology is hard at work developing ways to quickly design peptides that can disrupt protein-protein interactions involving Bcl-2 proteins, which promote cancer growth. Their most recent approach utilizes a computer program called dTERMen, developed by Keating lab alumnus, Gevorg Grigoryan PhD ’07, currently an associate professor of computer science and adjunct associate professor of biological sciences and chemistry at Dartmouth College. Researchers simply feed the program their desired structures, and it spits out amino acid sequences for peptides capable of disrupting specific protein-protein interactions.

    “It’s such a simple approach to use,” says Keating, an MIT professor of biology and senior author on the study. “In theory, you could put in any structure and solve for a sequence. In our study, the program came up with new sequence combinations that aren’t like anything found in nature — it deduced a completely unique way to solve the problem. It’s exciting to be uncovering new territories of the sequence universe.”

    Former postdoc Vincent Frappier and Justin Jenson PhD ’18 are co-first authors on the study, which appears in the latest issue of Structure.

    Same problem, different approach

    Jenson, for his part, has tackled the challenge of designing peptides that bind to Bcl-2 proteins using three distinct approaches. The dTERMen-based method, he says, is by far the most efficient and general one he’s tried yet.

    Standard approaches for discovering peptide inhibitors often involve modeling entire molecules down to the physics and chemistry behind individual atoms and their forces. Other methods require time-consuming screens for the best binding candidates. In both cases, the process is arduous and the success rate is low.

    dTERMen, by contrast, necessitates neither physics nor experimental screening, and leverages common units of known protein structures, like alpha helices and beta strands — called tertiary structural motifs or “TERMs” — which are compiled in collections like the Protein Data Bank. dTERMen extracts these structural elements from the data bank and uses them to calculate which amino acid sequences can adopt a structure capable of binding to and interrupting specific protein-protein interactions. It takes a single day to build the model, and mere seconds to evaluate a thousand sequences or design a new peptide.

    “dTERMen allows us to find sequences that are likely to have the binding properties we're looking for, in a robust, efficient, and general manner with a high rate of success,” Jenson says. “Past approaches have taken years. But using dTERMen, we went from structures to validated designs in a matter of weeks.”

    Of the 17 peptides they built using the designed sequences, 15 bound with native-like affinity, disrupting Bcl-2 protein-protein interactions that are notoriously difficult to target. In some cases, their designs were surprisingly selective and bound to a single Bcl-2 family member over the others. The designed sequences deviated from known sequences found in nature, which greatly increases the number of possible peptides.

    “This method permits a certain level of flexibility,” Frappier says. “dTERMen is more robust to structural change, which allows us to explore new types of structures and diversify our portfolio of potential binding candidates.”

    Probing the sequence universe

    Given the therapeutic benefits of inhibiting Bcl-2 function and slowing tumor growth, the Keating lab has already begun extending their design calculations to other members of the Bcl-2 family. They intend to eventually develop new proteins that adopt structures that have never been seen before.

    “We have now seen enough examples of various local protein structures that computational models of sequence-structure relationships can be inferred directly from structural data, rather than having to be rediscovered each time from atomistic interaction principles,” says Grigoryan, dTERMen’s creator. “It’s immensely exciting that such structure-based inference works and is accurate enough to enable robust protein design. It provides a fundamentally different tool to help tackle the key problems of structural biology — from protein design to structure prediction.”

    Frappier hopes one day to be able to screen the entire human proteome computationally, using methods like dTERMen to generate candidate binding peptides. Jenson suggests that using dTERMen in combination with more traditional approaches to sequence redesign could amplify an already powerful tool, empowering researchers to produce these targeted peptides. Ideally, he says, one day developing peptides that bind and inhibit your favorite protein could be as easy as running a computer program, or as routine as designing a DNA primer.

    According to Keating, although that time is still in the future, “our study is the first step towards demonstrating this capacity on a problem of modest scope.”

    This research was funded the National Institute of General Medical Sciences, National Science Foundation, Koch Institute for Integrative Cancer Research, Natural Sciences and Engineering Research Council of Canada, and Fonds de Recherche du Québec.

    << Previous Day 2019/02/15
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org