MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Sunday, October 27th, 2019

    Time Event
    11:59p
    Helping autonomous vehicles see around corners

    To improve the safety of autonomous systems, MIT engineers have developed a system that can sense tiny changes in shadows on the ground to determine if there’s a moving object coming around the corner.  

    Autonomous cars could one day use the system to quickly avoid a potential collision with another car or pedestrian emerging from around a building’s corner or from in between parked cars. In the future, robots that may navigate hospital hallways to make medication or supply deliveries could use the system to avoid hitting people.

    In a paper being presented at next week’s International Conference on Intelligent Robots and Systems (IROS), the researchers describe successful experiments with an autonomous car driving around a parking garage and an autonomous wheelchair navigating hallways. When sensing and stopping for an approaching vehicle, the car-based system beats traditional LiDAR — which can only detect visible objects — by more than half a second.

    That may not seem like much, but fractions of a second matter when it comes to fast-moving autonomous vehicles, the researchers say.

    “For applications where robots are moving around environments with other moving objects or people, our method can give the robot an early warning that somebody is coming around the corner, so the vehicle can slow down, adapt its path, and prepare in advance to avoid a collision,” adds co-author Daniela Rus, director of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science. “The big dream is to provide ‘X-ray vision’ of sorts to vehicles moving fast on the streets.”

    Currently, the system has only been tested in indoor settings. Robotic speeds are much lower indoors, and lighting conditions are more consistent, making it easier for the system to sense and analyze shadows.

    Joining Rus on the paper are: first author Felix Naser SM ’19, a former CSAIL researcher; Alexander Amini, a CSAIL graduate student; Igor Gilitschenski, a CSAIL postdoc; recent graduate Christina Liao ’19; Guy Rosman of the Toyota Research Institute; and Sertac Karaman, an associate professor of aeronautics and astronautics at MIT.

    Extending ShadowCam

    For their work, the researchers built on their system, called “ShadowCam,” that uses computer-vision techniques to detect and classify changes to shadows on the ground. MIT professors William Freeman and Antonio Torralba, who are not co-authors on the IROS paper, collaborated on the earlier versions of the system, which were presented at conferences in 2017 and 2018.

    For input, ShadowCam uses sequences of video frames from a camera targeting a specific area, such as the floor in front of a corner. It detects changes in light intensity over time, from image to image, that may indicate something moving away or coming closer. Some of those changes may be difficult to detect or invisible to the naked eye, and can be determined by various properties of the object and environment. ShadowCam computes that information and classifies each image as containing a stationary object or a dynamic, moving one. If it gets to a dynamic image, it reacts accordingly.

    Adapting ShadowCam for autonomous vehicles required a few advances. The early version, for instance, relied on lining an area with augmented reality labels called “AprilTags,” which resemble simplified QR codes. Robots scan AprilTags to detect and compute their precise 3D position and orientation relative to the tag. ShadowCam used the tags as features of the environment to zero in on specific patches of pixels that may contain shadows. But modifying real-world environments with AprilTags is not practical.

    The researchers developed a novel process that combines image registration and a new visual-odometry technique. Often used in computer vision, image registration essentially overlays multiple images to reveal variations in the images. Medical image registration, for instance, overlaps medical scans to compare and analyze anatomical differences.

    Visual odometry, used for Mars Rovers, estimates the motion of a camera in real-time by analyzing pose and geometry in sequences of images. The researchers specifically employ “Direct Sparse Odometry” (DSO), which can compute feature points in environments similar to those captured by AprilTags. Essentially, DSO plots features of an environment on a 3D point cloud, and then a computer-vision pipeline selects only the features located in a region of interest, such as the floor near a corner. (Regions of interest were annotated manually beforehand.)

    As ShadowCam takes input image sequences of a region of interest, it uses the DSO-image-registration method to overlay all the images from same viewpoint of the robot. Even as a robot is moving, it’s able to zero in on the exact same patch of pixels where a shadow is located to help it detect any subtle deviations between images.

    Next is signal amplification, a technique introduced in the first paper. Pixels that may contain shadows get a boost in color that reduces the signal-to-noise ratio. This makes extremely weak signals from shadow changes far more detectable. If the boosted signal reaches a certain threshold — based partly on how much it deviates from other nearby shadows — ShadowCam classifies the image as “dynamic.” Depending on the strength of that signal, the system may tell the robot to slow down or stop.

    “By detecting that signal, you can then be careful. It may be a shadow of some person running from behind the corner or a parked car, so the autonomous car can slow down or stop completely,” Naser says.

    Tag-free testing

    In one test, the researchers evaluated the system’s performance in classifying moving or stationary objects using AprilTags and the new DSO-based method. An autonomous wheelchair steered toward various hallway corners while humans turned the corner into the wheelchair’s path. Both methods achieved the same 70-percent classification accuracy, indicating AprilTags are no longer needed.

    In a separate test, the researchers implemented ShadowCam in an autonomous car in a parking garage, where the headlights were turned off, mimicking nighttime driving conditions. They compared car-detection times versus LiDAR. In an example scenario, ShadowCam detected the car turning around pillars about 0.72 seconds faster than LiDAR. Moreover, because the researchers had tuned ShadowCam specifically to the garage’s lighting conditions, the system achieved a classification accuracy of around 86 percent.

    Next, the researchers are developing the system further to work in different indoor and outdoor lighting conditions. In the future, there could also be ways to speed up the system’s shadow detection and automate the process of annotating targeted areas for shadow sensing.

    This work was funded by the Toyota Research Institute.

    11:59p
    Supercomputer analyzes web traffic across entire internet

    Using a supercomputing system, MIT researchers have developed a model that captures what web traffic looks like around the world on a given day, which can be used as a measurement tool for internet research and many other applications.

    Understanding web traffic patterns at such a large scale, the researchers say, is useful for informing internet policy, identifying and preventing outages, defending against cyberattacks, and designing more efficient computing infrastructure. A paper describing the approach was presented at the recent IEEE High Performance Extreme Computing Conference.

    For their work, the researchers gathered the largest publicly available internet traffic dataset, comprising 50 billion data packets exchanged in different locations across the globe over a period of several years.

    They ran the data through a novel “neural network” pipeline operating across 10,000 processors of the MIT SuperCloud, a system that combines computing resources from the MIT Lincoln Laboratory and across the Institute. That pipeline automatically trained a model that captures the relationship for all links in the dataset — from common pings to giants like Google and Facebook, to rare links that only briefly connect yet seem to have some impact on web traffic.  

    The model can take any massive network dataset and generate some statistical measurements about how all connections in the network affect each other. That can be used to reveal insights about peer-to-peer filesharing, nefarious IP addresses and spamming behavior, the distribution of attacks in critical sectors, and traffic bottlenecks to better allocate computing resources and keep data flowing.

    In concept, the work is similar to measuring the cosmic microwave background of space, the near-uniform radio waves traveling around our universe that have been an important source of information to study phenomena in outer space. “We built an accurate model for measuring the background of the virtual universe of the Internet,” says Jeremy Kepner, a researcher at the MIT Lincoln Laboratory Supercomputing Center and an astronomer by training. “If you want to detect any variance or anomalies, you have to have a good model of the background.”

    Joining Kepner on the paper are: Kenjiro Cho of the Internet Initiative Japan; KC Claffy of the Center for Applied Internet Data Analysis at the University of California at San Diego; Vijay Gadepally and Peter Michaleas of Lincoln Laboratory’s Supercomputing Center; and Lauren Milechin, a researcher in MIT’s Department of Earth, Atmospheric and Planetary Sciences.

    Breaking up data

    In internet research, experts study anomalies in web traffic that may indicate, for instance, cyber threats. To do so, it helps to first understand what normal traffic looks like. But capturing that has remained challenging. Traditional “traffic-analysis” models can only analyze small samples of data packets exchanged between sources and destinations limited by location. That reduces the model’s accuracy.

    The researchers weren’t specifically looking to tackle this traffic-analysis issue. But they had been developing new techniques that could be used on the MIT SuperCloud to process massive network matrices. Internet traffic was the perfect test case.

    Networks are usually studied in the form of graphs, with actors represented by nodes, and links representing connections between the nodes. With internet traffic, the nodes vary in sizes and location. Large supernodes are popular hubs, such as Google or Facebook. Leaf nodes spread out from that supernode and have multiple connections to each other and the supernode. Located outside that “core” of supernodes and leaf nodes are isolated nodes and links, which connect to each other only rarely.

    Capturing the full extent of those graphs is infeasible for traditional models. “You can’t touch that data without access to a supercomputer,” Kepner says.

    In partnership with the Widely Integrated Distributed Environment (WIDE) project, founded by several Japanese universities, and the Center for Applied Internet Data Analysis (CAIDA), in California, the MIT researchers captured the world’s largest packet-capture dataset for internet traffic. The anonymized dataset contains nearly 50 billion unique source and destination data points between consumers and various apps and services during random days across various locations over Japan and the U.S., dating back to 2015.

    Before they could train any model on that data, they needed to do some extensive preprocessing. To do so, they utilized software they created previously, called Dynamic Distributed Dimensional Data Mode (D4M), which uses some averaging techniques to efficiently compute and sort “hypersparse data” that contains far more empty space than data points. The researchers broke the data into units of about 100,000 packets across 10,000 MIT SuperCloud processors. This generated more compact matrices of billions of rows and columns of interactions between sources and destinations.

    Capturing outliers

    But the vast majority of cells in this hypersparse dataset were still empty. To process the matrices, the team ran a neural network on the same 10,000 cores. Behind the scenes, a trial-and-error technique started fitting models to the entirety of the data, creating a probability distribution of potentially accurate models.

    Then, it used a modified error-correction technique to further refine the parameters of each model to capture as much data as possible. Traditionally, error-correcting techniques in machine learning will try to reduce the significance of any outlying data in order to make the model fit a normal probability distribution, which makes it more accurate overall. But the researchers used some math tricks to ensure the model still saw all outlying data — such as isolated links — as significant to the overall measurements.

    In the end, the neural network essentially generates a simple model, with only two parameters, that describes the internet traffic dataset, “from really popular nodes to isolated nodes, and the complete spectrum of everything in between,” Kepner says.

    The researchers are now reaching out to the scientific community to find their next application for the model. Experts, for instance, could examine the significance of the isolated links the researchers found in their experiments that are rare but seem to impact web traffic in the core nodes.

    Beyond the internet, the neural network pipeline can be used to analyze any hypersparse network, such as biological and social networks. “We’ve now given the scientific community a fantastic tool for people who want to build more robust networks or detect anomalies of networks,” Kepner says. “Those anomalies can be just normal behaviors of what users do, or it could be people doing things you don’t want.”

    << Previous Day 2019/10/27
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org