MIT Research News' Journal
[Most Recent Entries]
[Calendar View]
Thursday, February 6th, 2020
Time |
Event |
9:44a |
Study: To slow an epidemic, focus on handwashing A new study estimates that improving the rates of handwashing by travelers passing through just 10 of the world’s leading airports could significantly reduce the spread of many infectious diseases. And the greater the improvement in people’s handwashing habits at airports, the more dramatic the effect on slowing the disease, the researchers found.
The findings, which deal with infectious diseases in general including the flu, were published in late December, just before the recent coronavirus outbreak in Wuhan, China, but the study’s authors say that its results would apply to any such disease and are relevant to the current outbreak.
The study, which is based on epidemiological modeling and data-based simulations, appears in the journal Risk Analysis. The authors are Professor Christos Nicolaides PhD ’14 of the University of Cyprus, who is also a fellow at the MIT Sloan School of Management; Professor Ruben Juanes of MIT’s Department of Civil and Environmental Engineering; and three others.
People can be surprisingly casual about washing their hands, even in crowded locations like airports where people from many different locations are touching surfaces such as chair armrests, check-in kiosks, security checkpoint trays, and restroom doorknobs and faucets. Based on data from previous research by groups including the American Society for Microbiology, the team estimates that on average, only about 20 percent of people in airports have clean hands — meaning that they have been washed with soap and water, for at least 15 seconds, within the last hour or so. The other 80 percent are potentially contaminating everything they touch with whatever germs they may be carrying, Nicolaides says.
“Seventy percent of the people who go to the toilet wash their hands afterwards,” Nicolaides says, about findings from a previous ASM study. “The other 30 percent don’t. And of those that do, only 50 percent do it right.” Others just rinse briefly in some water, rather than using soap and water and spending the recommended 15 to 20 seconds washing, he says. That figure, combined with estimates of exposure to the many potentially contaminated surfaces that people come into contact with in an airport, leads to the team’s estimate that about 20 percent of travelers in an airport have clean hands.
Improving handwashing at all of the world’s airports to triple that rate, so that 60 percent of travelers to have clean hands at any given time, would have the greatest impact, potentially slowing global disease spread by almost 70 percent, the researchers found. Deploying such measures at so many airports and reaching such a high level of compliance may be impractical, but the new study suggests that a significant reduction in disease spread could still be achieved by just picking the 10 most significant airports based on the initial location of a viral outbreak. Focusing handwashing messaging in those 10 airports could potentially slow the disease spread by as much as 37 percent, the researchers estimate.
They arrived at these estimates using detailed epidemiological simulations that involved data on worldwide flights including duration, distance, and interconnections; estimates of wait times at airports; and studies on typical rates of interactions of people with various elements of their surroundings and with other people.
Even small improvements in hygiene could make a noticeable dent. Increasing the prevalence of clean hands in all airports worldwide by just 10 percent, which the researchers think could potentially be accomplished through education, posters, public announcements, and perhaps improved access to handwashing facilities, could slow the global rate of the spread of a disease by about 24 percent, they found. Numerous studies (such as this one) have shown that such measures can increase rates of proper handwashing, Nicolaides says.
“Eliciting an increase in hand-hygiene is a challenge,” he says, “but new approaches in education, awareness, and social-media nudges have proven to be effective in hand-washing engagement.”
The researchers used data from previous studies on the effectiveness of handwashing in controlling transmission of disease, so Juanes says these data would have to be calibrated in the field to obtain refined estimates of the slow-down in spreading of a specific outbreak.
The findings are consistent with recommendations made by both the U.S. Centers for Disease Control and the World Health Organization. Both have indicated that hand hygiene is the most efficient and cost-effective way to control disease propagation. While both organizations say that other measures can also play a useful role in limiting disease spread, such as use of surgical face masks, airport closures, and travel restrictions, hand hygiene is still the first line of defense — and an easy one for individuals to implement.
While the potential of better hand hygiene in controlling transmission of diseases between individuals has been extensively studied and proven, this study is one of the first to quantitatively assess the effectiveness of such measures as a way to mitigate the risk of a global epidemic or pandemic, the authors say.
The researchers identified 120 airports that are the most influential in spreading disease, and found that these are not necessarily the ones with the most overall traffic. For example, they cite the airports in Tokyo and Honolulu as having an outsized influence because of their locations. While they respectively rank 46th and 117th in terms of overall traffic, they can contribute significantly to the spread of disease because they have direct connections to some of the world’s biggest airport hubs, they have long-range direct international flights, and they sit squarely between the global East and West.
For any given disease outbreak, identifying the 10 airports from this list that are the closest to the location of the outbreak, and focusing handwashing education at those 10 turned out to be the most effective way of limiting the disease spread, they found.
Nicolaides says that one important step that could be taken to improve handwashing rates and overall hygiene at airports would be to have handwashing sinks available at many more locations, especially outside of the restrooms where surfaces tend to be highly contaminated. In addition, more frequent cleaning of surfaces that are contacted by many people could be helpful.
The research team also included Demetris Avraam at the University of Cyprus and at Newcastle University in the U.K., Luis Cueto-Felgueroso the Polytechnic University of Madrid, and Marta Gonzalez at the University of California at Berkeley and MIT. The work was supported by startup company Smixin Inc and MIT International Science and Technology Initiatives. | 10:57a |
Researchers develop a roadmap for growth of new solar cells Materials called perovskites show strong potential for a new generation of solar cells, but they’ve had trouble gaining traction in a market dominated by silicon-based solar cells. Now, a study by researchers at MIT and elsewhere outlines a roadmap for how this promising technology could move from the laboratory to a significant place in the global solar market.
The “technoeconomic” analysis shows that by starting with higher-value niche markets and gradually expanding, solar panel manufacturers could avoid the very steep initial capital costs that would be required to make perovskite-based panels directly competitive with silicon for large utility-scale installations at the outset. Rather than making a prohibitively expensive initial investment, of hundreds of millions or even billions of dollars, to build a plant for utility-scale production, the team found that starting with more specialized applications could be accomplished for more realistic initial capital investment on the order of $40 million.
The results are described in a paper in the journal Joule by MIT postdoc Ian Mathews, research scientist Marius Peters, professor of mechanical engineering Tonio Buonassisi, and five others at MIT, Wellesley College, and Swift Solar Inc.
Solar cells based on perovskites — a broad category of compounds characterized by a certain arrangement of their molecular structure — could provide dramatic improvements in solar installations. Their constituent materials are inexpensive, and they could be manufactured in a roll-to-roll process like printing a newspaper, and printed onto lightweight and flexible backing material. This could greatly reduce costs associated with transportation and installation, although they still require further work to improve their durability. Other promising new solar cell materials are also under development in labs around the world, but none has yet made inroads in the marketplace.
“There have been a lot of new solar cell materials and companies launched over the years,” says Mathews, “and yet, despite that, silicon remains the dominant material in the industry and has been for decades.”
Why is that the case? “People have always said that one of the things that holds new technologies back is that the expense of constructing large factories to actually produce these systems at scale is just too much,” he says. “It’s difficult for a startup to cross what’s called ‘the valley of death,’ to raise the tens of millions of dollars required to get to the scale where this technology might be profitable in the wider solar energy industry.”
But there are a variety of more specialized solar cell applications where the special qualities of perovskite-based solar cells, such as their light weight, flexibility, and potential for transparency, would provide a significant advantage, Mathews says. By focusing on these markets initially, a startup solar company could build up to scale gradually, leveraging the profits from the premium products to expand its production capabilities over time.
Describing the literature on perovskite-based solar cells being developed in various labs, he says, “They’re claiming very low costs. But they’re claiming it once your factory reaches a certain scale. And I thought, we’ve seen this before — people claim a new photovoltaic material is going to be cheaper than all the rest and better than all the rest. That’s great, except we need to have a plan as to how we actually get the material and the technology to scale.”
As a starting point, he says, “We took the approach that I haven’t really seen anyone else take: Let’s actually model the cost to manufacture these modules as a function of scale. So if you just have 10 people in a small factory, how much do you need to sell your solar panels at in order to be profitable? And once you reach scale, how cheap will your product become?”
The analysis confirmed that trying to leap directly into the marketplace for rooftop solar or utility-scale solar installations would require very large upfront capital investment, he says. But “we looked at the prices people might get in the internet of things, or the market in building-integrated photovoltaics. People usually pay a higher price in these markets because they’re more of a specialized product. They’ll pay a little more if your product is flexible or if the module fits into a building envelope.” Other potential niche markets include self-powered microelectronics devices.
Such applications would make the entry into the market feasible without needing massive capital investments. “If you do that, the amount you need to invest in your company is much, much less, on the order of a few million dollars instead of tens or hundreds of millions of dollars, and that allows you to more quickly develop a profitable company,” he says.
“It’s a way for them to prove their technology, both technically and by actually building and selling a product and making sure it survives in the field,” Mathews says, “and also, just to prove that you can manufacture at a certain price point.”
Already, there are a handful of startup companies working to try to bring perovskite solar cells to market, he points out, although none of them yet has an actual product for sale. The companies have taken different approaches, and some seem to be embarking on the kind of step-by-step growth approach outlined by this research, he says. “Probably the company that’s raised the most money is a company called Oxford PV, and they’re looking at tandem cells,” which incorporate both silicon and perovskite cells to improve overall efficiency. Another company is one started by Joel Jean PhD ’17 (who is also a co-author of this paper) and others, called Swift Solar, which is working on flexible perovskites. And there’s a company called Saule Technologies, working on printable perovskites.
Mathews says the kind of technoeconomic analysis the team used in its study could be applied to a wide variety of other new energy-related technologies, including rechargeable batteries and other storage systems, or other types of new solar cell materials.
“There are many scientific papers and academic studies that look at how much it will cost to manufacture a technology once it’s at scale,” he says. “But very few people actually look at how much does it cost at very small scale, and what are the factors affecting economies of scale? And I think that can be done for many technologies, and it would help us accelerate how we get innovations from lab to market.”
The research team also included MIT alumni Sarah Sofia PhD ’19 and Sin Cheng Siah PhD ’15, Wellesley College student Erica Ma, and former MIT postdoc Hannu Laine. The work was supported by the European Union’s Horizon 2020 research and innovation program, the Martin Family Society for Fellows of Sustainability, the U.S. Department of Energy, Shell, through the MIT Energy Initiative, and the Singapore-MIT Alliance for Research and Technology. | 11:59p |
Simple, solar-powered water desalination A completely passive solar-powered desalination system developed by researchers at MIT and in China could provide more than 1.5 gallons of fresh drinking water per hour for every square meter of solar collecting area. Such systems could potentially serve off-grid arid coastal areas to provide an efficient, low-cost water source.
The system uses multiple layers of flat solar evaporators and condensers, lined up in a vertical array and topped with transparent aerogel insulation. It is described in a paper appearing today in the journal Energy and Environmental Science, authored by MIT doctoral students Lenan Zhang and Lin Zhao, postdoc Zhenyuan Xu, professor of mechanical engineering and department head Evelyn Wang, and eight others at MIT and at Shanghai Jiao Tong University in China.
The key to the system’s efficiency lies in the way it uses each of the multiple stages to desalinate the water. At each stage, heat released by the previous stage is harnessed instead of wasted. In this way, the team’s demonstration device can achieve an overall efficiency of 385 percent in converting the energy of sunlight into the energy of water evaporation.
The device is essentially a multilayer solar still, with a set of evaporating and condensing components like those used to distill liquor. It uses flat panels to absorb heat and then transfer that heat to a layer of water so that it begins to evaporate. The vapor then condenses on the next panel. That water gets collected, while the heat from the vapor condensation gets passed to the next layer.
Whenever vapor condenses on a surface, it releases heat; in typical condenser systems, that heat is simply lost to the environment. But in this multilayer evaporator the released heat flows to the next evaporating layer, recycling the solar heat and boosting the overall efficiency.
“When you condense water, you release energy as heat,” Wang says. “If you have more than one stage, you can take advantage of that heat.”
Adding more layers increases the conversion efficiency for producing potable water, but each layer also adds cost and bulk to the system. The team settled on a 10-stage system for their proof-of-concept device, which was tested on an MIT building rooftop. The system delivered pure water that exceeded city drinking water standards, at a rate of 5.78 liters per square meter (about 1.52 gallons per 11 square feet) of solar collecting area. This is more than two times as much as the record amount previously produced by any such passive solar-powered desalination system, Wang says.
Theoretically, with more desalination stages and further optimization, such systems could reach overall efficiency levels as high as 700 or 800 percent, Zhang says.
Unlike some desalination systems, there is no accumulation of salt or concentrated brines to be disposed of. In a free-floating configuration, any salt that accumulates during the day would simply be carried back out at night through the wicking material and back into the seawater, according to the researchers.
Their demonstration unit was built mostly from inexpensive, readily available materials such as a commercial black solar absorber and paper towels for a capillary wick to carry the water into contact with the solar absorber. In most other attempts to make passive solar desalination systems, the solar absorber material and the wicking material have been a single component, which requires specialized and expensive materials, Wang says. “We’ve been able to decouple these two.”
The most expensive component of the prototype is a layer of transparent aerogel used as an insulator at the top of the stack, but the team suggests other less expensive insulators could be used as an alternative. (The aerogel itself is made from dirt-cheap silica but requires specialized drying equipment for its manufacture.)
Wang emphasizes that the team’s key contribution is a framework for understanding how to optimize such multistage passive systems, which they call thermally localized multistage desalination. The formulas they developed could likely be applied to a variety of materials and device architectures, allowing for further optimization of systems based on different scales of operation or local conditions and materials.
One possible configuration would be floating panels on a body of saltwater such as an impoundment pond. These could constantly and passively deliver fresh water through pipes to the shore, as long as the sun shines each day. Other systems could be designed to serve a single household, perhaps using a flat panel on a large shallow tank of seawater that is pumped or carried in. The team estimates that a system with a roughly 1-square-meter solar collecting area could meet the daily drinking water needs of one person. In production, they think a system built to serve the needs of a family might be built for around $100.
The researchers plan further experiments to continue to optimize the choice of materials and configurations, and to test the durability of the system under realistic conditions. They also will work on translating the design of their lab-scale device into a something that would be suitable for use by consumers. The hope is that it could ultimately play a role in alleviating water scarcity in parts of the developing world where reliable electricity is scarce but seawater and sunlight are abundant.
“This new approach is very significant,” says Ravi Prasher, an associate lab director at
Lawrence Berkeley National Laboratory and adjunct professor of mechanical engineering at the University of California at Berkeley, who was not involved in this work. “One of the challenges in solar still-based desalination has been low efficiency due to the loss of significant energy in condensation. By efficiently harvesting the condensation energy, the overall solar to vapor efficiency is dramatically improved. … This increased efficiency will have an overall impact on reducing the cost of produced water.”
The research team included Bangjun Li, Chenxi Wang and Ruzhu Wang at the Shanghai Jiao Tong University, and Bikram Bhatia, Kyle Wilke, Youngsup Song, Omar Labban, and John Lienhard, who is the Abdul Latif Jameel Professor of Water at MIT. The research was supported by the National Natural Science Foundation of China, the Singapore-MIT Alliance for Research and Technology, and the MIT Tata Center for Technology and Design. |
|