MIT Research News' Journal
 
[Most Recent Entries] [Calendar View]

Wednesday, March 25th, 2020

    Time Event
    4:55p
    Meet the first undergraduate users of MIT.nano

    Last semester, MIT undergraduates completed the first-ever term of coursework to be done utilizing the facilities of MIT.nano, the Institute’s new 216,000 square-foot center for nanoscale research.

    The course — 3.155/6.152 (Micro/Nano Processing Technology), offered jointly by the departments of Electrical Engineering and Computer Science (EECS) and Materials Science and Engineering (DMSE) — enrolled 25 undergraduate and nine graduate students from seven different departments in fall 2019. The students learned nanofabrication by using research space and equipment throughout MIT.nano to make solar cells, MEMS cantilever beams, and microfluidic devices.

    “This 2019 cohort is part of MIT’s history — the first to complete coursework through hands-on research in MIT.nano,” says Vladimir Bulović, faculty director of MIT.nano and the Fariborz Maseeh (1990) Professor in Emerging Technology. “We are thrilled to see undergraduate and graduate students from multiple disciplines honing their skills in MIT.nano cleanrooms and labs. It was great to see them innovate with tools of MIT.nano as they designed outstanding projects. We very much look forward to welcoming the next cohort of hands-on scholars.”

    Co-taught by Jurgen Michel, senior research associate at DMSE, and Jorg Scholvin, assistant director for user services at MIT.nano, the course was overhauled in 2017 to become more student-driven with an added element of creativity where students get to design and build their own devices. Scholvin emphasizes the importance of teaching the students not only how to run the equipment, but how to work safely and effectively in a cleanroom and to understand the theoretical background of the fabrication equipment.

    “Being able to work at and understand the nanoscale is becoming more and more essential in all science and engineering fields,” says Scholvin. “In this course, we work with students from many departments with very different scientific backgrounds and interests to give them basic skills that they can use to implement their own ideas. Then, they can go forward and adapt these processes to address higher-level, complex, interesting problems in the future.”

    Learn the basics, design your own solutions

    Before being set loose on their own designs, students completed two lab modules. In the first, focused on solar cells, they fabricated a silicon-based device and then tested it using the ENI Solar Frontiers tools in the third-floor MIT.nano cleanroom. The students later packaged their finished solar cells using electronic and photonic packaging tools in the fifth-floor prototyping facility. Students worked under the guidance of Anu Agarwal, principal research scientist at MIT's Microphotonics Center, and used equipment from the AIM Photonics Lab for Education and Application Prototypes toolset to connect their solar cells to circuit boards using wirebonds.

    Choosing between MEMS cantilevers or microfluidic channels for the second module, students conducted wet etching of cantilever beams on the first-floor cleanroom of MIT.nano or fabricated microfluidics in the third-floor soft lithography lab. In addition to etching and fabrication, students learned about chemical and physical deposition, thermal processes, and device and materials characterization. These lab modules provide the background knowledge needed for students to apply one of these processes to their own projects.

    “6.152 was a great opportunity to get first-hand nanofabrication experience combined with theoretical classroom knowledge," says Ella Richards, a junior in DMSE. "The class showcased the creative research possibilities that MIT.nano has to offer, and the resilience needed to make them a reality."

    The real fun began in the final stage of the course, when students formulated their own device ideas, based on cantilevers or fluidic mixers, in a start-to-finish project. “First, the students get experience working in a cleanroom and learn the theory of processes and tools. Then, they apply their own background and interests to build and test something new,” says Scholvin. “This is when the creativity of the toolset is really driven by the students.”

    Students from different departments chose different designs and projects based on their research focus. Scholvin emphasizes that this variety of work illustrates the importance of shared access to equipment. By not being dedicated to one project in one specific lab, but rather being housed at MIT.nano where any trained researcher can use it, he says, a tool can be applied to several projects in different disciplines.

    Experiencing the full spectrum of fabrication

    The goal, according to the instructors, is not simply tool training, but to give students exposure to the full spectrum of research in nanofabrication. The students must conceive of their own devices, pitch their ideas to the class, create CAD layouts, fabricate the device, debug the process, and test the results. And, as in any research project, they write a paper and have the opportunity to present their ideas and results to a broader technical audience.

    At the conclusion of the course, prizes were awarded for the most innovative designs and the three best papers. Andison Tran, Ella Richards, and Stefan Wan were honored for their designs. Tran and Wan are majoring in chemical engineering, Richards in materials science and engineering. Kristina Greenwood, Kyle James, and Blair Anaman Williams received awards for their papers; all three are chemical engineering majors.

    "I really enjoyed taking 6.152. It was the first time I was exposed to nanofabrication and I'm grateful for the amount of effort the course staff put into making what was such a new concept to me both interesting and easy to understand. I appreciated how we were given liberty to create our own devices, which brought to life all the principles and skills we learned in the class. Getting to spend time in the cleanrooms was an experience I'll never forget," says Williams, a junior in chemical engineering.

    The 6.152J/3.155J students were eligible to present their projects at the Microsystems Annual Research Conference (MARC), co-sponsored by MIT.nano and Microsystems Technology Laboratories at the end of January. Five undergraduates and two graduate students from the class presented their work — Williams from chemical engineering; Abdulmalik Alghonaim, Michael Dubrovsky (graduate student), Danielle Grey-Stewart, Ella Richards, and Ava Waitz, all from DMSE; and Shubham Yadav (graduate student) from the Program in Media Arts & Sciences. Heyi Li (mechanical engineering) and Zachary Pitcher (EECS), both undergraduates, also attended the conference.

    The micro/nano processing technology course will be offered again in fall 2020.

    5:10p
    Five MIT payloads deployed on the International Space Station

    Five research payloads from the MIT Media Lab’s Space Exploration Initiative were recently deployed on the International Space Station for a 30-day research mission. Scientists, designers, and artists will be able to study the effects of prolonged microgravity, on-station radiation, and launch loads on experiments ranging from self-assembling architecture to biological pigments. The payloads launched on the SpaceX CRS-20 via the Dragon cargo ship atop a Falcon 9 rocket on March 6.

    This first launch to the ISS represents a key milestone in the schedule of iterative microgravity testing that the Space Exploration Initiative (SEI) undertakes throughout each year, following a successful Karman line launch with Blue Origin and a second parabolic research flight over the past 12 months. 

    “Sending five concurrent payloads to the International Space Station — this is a huge milestone for the team, and something we’ve been working towards explicitly for nearly a year,” says Ariel Ekblaw, SEI’s founder and lead. 

    The payloads were integrated into the Nanoracks BlackBox, a locker-sized platform with mechanical mounting points and electrical connections for power, data, and communication capabilities. Payloads are fully integrated into BlackBox on the ground; when they reach ISS, the astronauts aboard integrate them into ISS experiment racks, then simply leave them alone — the boxes are completely self-contained and remotely commanded via Nanoracks from the ground. This system allows for larger and more complex research payloads on the ISS, as the astronauts aren’t required to come near any potentially hazardous materials and don’t need any special expertise to run the experiments. 

    The capabilities of this platform allow for precisely the kind of cross-disciplinary research that is the hallmark of the Space Exploration Initiative. The five payloads currently on the ISS represent SEI’s unique approach to research, prototyping, and design for humanity’s future in space.

    Sojourner 2020 is payload of artworks, the first-ever international “open call” art payload to the ISS, selected by SEI’s arts curator Xin Liu. Sojourner 2020 features a three-layer telescoping structure. Each layer of the structure rotates independently; the top layer remains still in weightlessness, while the middle and bottom layers spin at different speeds to produce centripetal accelerations that mimic lunar gravity and Martian gravity, respectively. Nine artists contributed works in a variety of different media, including carved stone sculpture, liquid pigment experiments, and sculptures made of transgender hormone replacement meds. Sojourner 2020 highlights the ways in which the arts can contribute to new means of encountering space; by including projects from indigenous peoples and gender minorities, the project additionally emphasizes key values of human dignity, equality, and democratizing access. 

    Space Miso, a collaboration between Maggie Coblentz at the MIT Media Lab and Joshua Evans at the University of Oxford, aims to map the emergence of a new space “terroir.” This research seeks to understand how the environment of space may uniquely alter the flavors of familiar foods, in particular through fermentation processes. This initial experiment sends a sample of miso to the ISS for 30 days and tracks how its microbiome and flavor chemistry may change compared to earthbound control samples.

    The latest iteration of Ekblaw’s self-assembling TESSERAE tiles tests new paradigms for in-orbit construction of satellites and future space habitats. The tiles (two pentagons, five hexagons) will be selectively released on-station to test autonomous self-assembly and docking over many days of sustained microgravity. These latest prototypes include an extensive suite of sensing and electro-permanent magnet actuation for full diagnostic capability (determining “good” and “bad” bonds between tiles as they join together) and structure reconfigurability.

    Radiofungi: Biological Pigments for Radioprotection is a payload from the Mediated Matter Group. The Radiofungi team is researching the synthesis of biological pigments, including melanins and carotenoids, to explore the potential new strategies for radiation protection. Such pigments can be fabricated for a variety of applications, creating a new class of materials and coatings that can protect life on Earth, in deep space, and beyond. This payload examines the growth and behavior of five pigment-producing microorganisms during a one-month stint on the ISS. 

    BioX1 is an onboard nanopore genetic sequencer, designed by a research team from MIT's Department of Earth, Atmospheric and Planetary Sciences, testing an experiment apparatus for DNA analysis that may become the basis for a future Mars rover experiment. The experiment will analyze sequencing tools that assist in the Search for Extraterrestrial Genomes program, a NASA-funded life detection instrument that would detect nucleic acid-based life via single molecule sequencing.

    The Nanoracks team supporting the MIT payloads is able to downlink data directly from the networked payload on the International Space Station, and then share directly to the researchers. The team is hard at work analyzing telemetry, sensor data, pictures, and videos to track each payload’s current status. These results will be paired with a full holistic report on each payload upon return of the hardware to Earth. After the 30-day mission, the BlackBox will be packed up as return cargo in the Dragon capsule, splash down in the Pacific Ocean, and then Nanoracks will acquire BlackBox to return to MIT. 

    Several of these projects directly address research supported by the NASA-guided Translational Research Institute for Space Health. All represent collaborations across disciplines — engineering, architecture, materials science, chemistry, art, technology, design, and more. This kind of cross-pollination and teamwork are core to SEI’s mission.

    For Ekblaw, that ethos doesn’t extend only to research; it’s about bringing people together, building communities of people with different interests and expertise with shared goals and common experiences. It’s why she flew any of the researchers who were able to make the trip down to Cape Canaveral to watch the launch together, and why she hosted a dinner for the researchers, the artists, and the Nanoracks team.  

    “Our Space Exploration Initiative deployments are often MIT-wide endeavors — it's an honor to have the opportunity to support research and collaborations that span departments,” says Ekblaw. “We are standing on the shoulders of giants, and are actively expanding our regular cadence of SEI launch opportunities, throughout the year, to an even broader community. This means building bridges across the space industry — with academia, business, and government — to profoundly democratize access to space.”

    << Previous Day 2020/03/25
    [Calendar]
    Next Day >>

MIT Research News   About LJ.Rossia.org