Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-06-09 01:47:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
NeuroNella: A Robust Unsupervised Algorithm for Identification of Neural Activity from Multielectrode Arrays
We introduce NeuroNella, an automated algorithm developed for the identification of neuronal activity from multichannel electrode arrays. In evaluations conducted on recordings from implanted probes in the nervous system of rodents and primates, the algorithm demonstrated remarkable accuracy, showcasing an error rate of less than 1% compared to ground-truth patch clamp signals. Notably, the proposed algorithm handles large datasets efficiently without the necessity of a GPU system. The results highlighted the algorithm's efficacy in detecting sources in a wide amplitude range and its adaptability in accommodating minor probe shifts. Moreover, the high robustness exhibited by the algorithm in decomposing recordings lasting up to 30 minutes underscores its potential for enabling longitudinal studies and prolonged recording sessions, thus opening new avenues for future brain/machine interface applications.


(Читать комментарии) (Добавить комментарий)