Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-08-23 07:16:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Speech Synthesis from Electrocorticogram During Imagined Speech Using a Transformer-Based Decoder and Pretrained Vocoder
This study describes speech synthesis from an Electrocorticogram (ECoG) during imagined speech. We aim to generate high-quality audio despite the limitations of available training data by employing a Transformer-based decoder and a pretrained vocoder. Specifically, we used a pre-trained neural vocoder, Parallel WaveGAN, to convert the log-mel spectrograms output by the Transformer decoder, which was trained on ECoG signals, into high-quality audio signals. In our experiments, using ECoG signals recorded from 13 participants, the synthesized speech from imagined speech achieved a dynamic time-warping (DTW) Pearson correlation ranging from 0.85 to 0.95. This high-quality speech synthesis can be attributed to the Transformer decoder's ability to accurately reconstruct high-fidelity log-mel spectrograms, demonstrating its effectiveness in dealing with limited training data.


(Читать комментарии) (Добавить комментарий)