Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-09-14 01:17:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Functional separation of long-range inputs by intrinsic dynamics of dorsal raphe 5-HT neurons
The serotonergic dorsal raphe nucleus (DRN) receives diverse long-range synaptic inputs, yet the processing rules governing their contribution to DRN output spiking patterns are largely unknown. Here, we use electrophysiological, optogenetic and computational approaches to compare electrophysiological features of two major excitatory inputs onto DRN 5-HT neurons - the lateral habenula (LHb) and medial prefrontal cortex (mPFC). Dual-color opsin strategies revealed that a population of 5-HT neurons receive inputs from both mPFC and LHb. Subthreshold excitatory postsynaptic potentials triggered by both inputs were largely indistinguishable, yet suprathreshold spiking behavior exhibited input-specific latencies and dispersion statistics. A support vector machine classifier demonstrated that input identity can be accurately decoded from spike timing, but not subthreshold events, of under ten 5-HT neurons. Upon examining the intrinsic cellular mechanisms in 5-HT neurons that couple EPSPs to spiking dynamics, we uncovered two likely candidate mechanisms: a low-threshold calcium conductance that selectively boosts slow excitatory inputs, and a subthreshold, voltage-dependent membrane noise that generates variation of spike latency and jitter. Stochastic simulations suggest that these two intrinsic properties of 5-HT neurons are sufficient to transform LHb and mPFC inputs into distinct output spiking patterns. These results reveal that hub-like networks like the DRN can segregate distinct informational streams by a cell-intrinsic mechanism. The resulting emergent population spike synchrony code provides a means for the DRN to widely broadcast these streams as a multiplexed signals.


(Читать комментарии) (Добавить комментарий)