|

|

Understanding the high-order network plasticity mechanisms of ultrasound neuromodulation
Transcranial ultrasound stimulation (TUS) is an emerging non-invasive neuromodulation technique, offering a potential alternative to pharmacological treatments for psychiatric and neurological disorders. While functional analysis has been instrumental in characterizing TUS effects, understanding the underlying mechanisms remains a challenge. Here, we developed a whole-brain model to represent functional changes as measured by fMRI, enabling us to investigate how TUS-induced effects propagate throughout the brain with increasing stimulus intensity. We implemented two mechanisms: one based on anatomical distance and another on broadcasting dynamics, to explore plasticity-driven changes in specific brain regions. Finally, we highlighted the role of higher-order functional interactions in localizing spatial effects of off-line TUS at two target areas-the right thalamus and inferior frontal cortex-revealing distinct patterns of functional reorganization. This work lays the foundation for mechanistic insights and predictive models of TUS, advancing its potential clinical applications.
(Читать комментарии) (Добавить комментарий)
|
|