Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-05-27 03:01:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Predicting and Shaping Human-Machine Interactions in Closed-loop, Co-adaptive Neural Interfaces
Neural interfaces can restore or augment human sensorimotor capabilities by converting high-bandwidth biological signals into control signals for an external device via a decoder algorithm. Leveraging user and decoder adaptation to create co-adaptive interfaces presents opportunities to improve usability and personalize devices. However, we lack principled methods to model and optimize the complex two-learner dynamics that arise in co-adaptive interfaces. Here, we present new computational methods based on control theory and game theory to analyze and generate predictions for user-decoder co-adaptive outcomes in continuous interactions. We tested these computational methods using an experimental platform where human participants (N=14) learn to control a cursor using an adaptive myoelectric interface to track a target on a computer display. Our framework predicted the outcome of co-adaptive interface interactions and revealed how interface properties can shape user behavior. These findings contribute new tools to design personalized, closed-loop, co-adaptive neural interfaces.


(Читать комментарии) (Добавить комментарий)