Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-09-29 20:32:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
A Kinematic Deviation Index (KDI) for Evaluation of Forelimb Function in Rodents
Rodent models are widely used to study neurological conditions and assess forelimb movement to measure function performance, deficit, recovery and treatment effectiveness. Traditional assessment methods based on endpoints such as whether the task is accomplished, while easy to implement, provide limited information on movement patterns important to assess different functional strategies. On the other side, detailed kinematic analysis provides granular information on the movement patterns but is difficult to compare across laboratories, and may not translate to clinical metrics of upper limb function. To address these limitations, we developed and validated a kinematic deviation index (KDI) for rodents that mimics current trends in clinical research. The KDI is a unitless summary score that quantifies the difference between an animal movement during a task and its optimal performance derived from spatiotemporal marker sequences without pre-specifying movements. We demonstrate the utility of KDI in assessing reaching and grasping in mice and validate its discrimination between trial endpoints in healthy animals. Furthermore, we show KDI sensitivity to interventions, including acute and chronic spinal cord injury and optogenetic disruption of sensorimotor circuits. The KDI provides a comprehensive measure of motor function that bridges the gap between detailed kinematic analysis and simple success/failure metrics, offering a valuable tool for assessing recovery and compensation in rodent models of neurological disorders.


(Читать комментарии) (Добавить комментарий)