Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-10-05 04:42:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Discovering Temporally Compositional Neural Manifolds with Switching Infinite GPFA
Gaussian Process Factor Analysis (GPFA) is a powerful latent variable model for extracting low-dimensional manifolds underlying population neural activities. However, one limitation of standard GPFA models is that the number of latent factors needs to be pre-specified or selected through heuristic-based processes, and that all factors contribute at all times. We propose the infinite GPFA model, a fully Bayesian non-parametric extension of the classical GPFA by incorporating an Indian Buffet Process (IBP) prior over the factor loading process, such that it is possible to infer a potentially infinite set of latent factors, and the identity of those factors that contribute to neural firings in a compositional manner at each time point. Learning and inference in the infinite GPFA model is performed through variational expectation-maximisation, and we additionally propose scalable extensions based on sparse variational Gaussian Process methods. We empirically demonstrate that the infinite GPFA model correctly infers dynamically changing activations of latent factors on a synthetic dataset. By fitting the infinite GPFA model to population activities of hippocampal place cells during spatial navigation, we identify non-trivial and behaviourally meaningful dynamics in the neural encoding process.


(Читать комментарии) (Добавить комментарий)