Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-10-26 23:18:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Posterior parietal cortex mediates rarity-induced decision bias and learning under uncertainty
Making decisions when outcomes are uncertain requires accurate judgment of the probability of outcomes, yet such judgments are often inaccurate, owing to reliance on heuristics that introduce systematic errors like overweighting of low probabilities. Here, using a decision-making task in which the participants were unaware of outcome probabilities, we discovered that both humans and mice exhibit a rarity-induced decision bias (RIDB), i.e., a preference towards rare rewards, which persists across task performance. Optogenetics experiments demonstrated that activity in the posterior parietal cortex (PPC) is required for the RIDB. Using in vivo electrophysiology, we found that rare rewards bidirectionally modulate choice-encoding PPC neurons to bias subsequent decisions towards rare rewards. Learning enhances stimulus-encoding of PPC neurons, which plays a causal role in stimulus-guided decisions. We then developed a dual-agent behavioural model that successfully recapitulates the decision-making and learning behaviours, and corroborates the specific functions of PPC neurons in mediating decision-making and learning. Thus, beyond expanding understanding of rare probability overweighting to a context where the outcome probability is unknown, and characterizing the neural basis for RIDB in the PPC, our study reveals an evolutionarily conserved heuristic that persistently impacts decision-making and learning under uncertainty.


(Читать комментарии) (Добавить комментарий)