|

|

Genetic changes linked to two different syndromic forms of autism enhance reinforcement learning in adolescent male but not female mice
Autism Spectrum Disorder (ASD) is characterized by restricted and repetitive behaviors and social differences, both of which may manifest, in part, from underlying differences in corticostriatal circuits and reinforcement learning. Here, we investigated reinforcement learning in mice with mutations in either Tsc2 or Shank3, both high-confidence ASD risk genes associated with major syndromic forms of ASD. Using an odor-based two-alternative forced choice (2AFC) task, we tested adolescent mice of both sexes and found male Tsc2 and Shank3B heterozygote (Het) mice showed enhanced learning performance compared to their wild type (WT) siblings. No gain of function was observed in females. Using a novel reinforcement learning (RL) based computational model to infer learning rate as well as policy-level task engagement and disengagement, we found that the gain of function in males was driven by an enhanced positive learning rate in both Tsc2 and Shank3B Het mice. The gain of function in Het males was absent when mice were trained with a probabilistic reward schedule. These findings in two ASD mouse models reveal a convergent learning phenotype that shows similar sensitivity to sex and environmental uncertainty. These data can inform our understanding of both strengths and challenges associated with autism, while providing further evidence that sex and experience of uncertainty modulate autism-related phenotypes.
(Читать комментарии) (Добавить комментарий)
|
|