Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-08-27 20:31:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Aperiodic and Periodic EEG Component Lifespan Trajectories: Monotonic Decrease versus Growth-then-Decline
Unraveling the lifespan trajectories of human brain development is critical for understanding brain health and disease. Recent research demonstrates that electroencephalography signals are composed of periodic and aperiodic components reflecting distinct physiological substrates. This dissociation raises the possibility that they follow different developmental tendencies. Here, we delineate the lifespan trajectories of aperiodic and periodic neural oscillations using a large international cohort (N=1,563, ages 5 to 95, resting state, eyes closed). We reveal two fundamental developmental patterns: a Monotonic decrease in aperiodic activity and a Growth-and-Decline pattern for periodic activity. Both components have inflections around age 20 and transition to a stable senescent phase around age 40. Spatially, anterior regions mainly exhibit aperiodic activity, while periodic activity concentrate on posterior regions and these patterns remain stable throughout life. Crucially, multimodal analysis shows these trajectories map onto distinct biological substrates. The periodic component's Growth and Decline trajectory aligns with GABAergic function and myelination. In contrast, the monotonically decreasing trajectory of aperiodic activity mirrors fundamental biomarkers of biological aging, such as DNA methylation and telomere length. Transforming age to a logarithmic scale simplifies these nonlinear trajectories into a linear decreasing and a piecewise concave linear model for aperiodic and periodic components. This form provides a robust and parsimonious framework for quantifying maturation and identifying neurological deviations.


(Читать комментарии) (Добавить комментарий)