Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-09-30 01:18:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Neural field patient-specific super resolution for enhanced 1.5 Tesla brain MRI visualization
Brain magnetic resonance imaging serves as a cornerstone of preoperative neurosurgical assessment. Neural fields represent an emerging machine learning approach capable of super-resolution reconstruction and novel view synthesis without requiring large training datasets. Ten 1.5-Tesla brain MRI sequences (nine anisotropic and one isotropic) were used to train patient-specific neural field models using a closed source machine learning framework (Radscaler). Image quality assessment was performed on reconstructions upscaled by factors of 2, 3, and 4 relative to original resolution. The method achieved favorable quality metrics across all scaling factors: mean (sd) SSIM of 0.85 (0.04), MS-SSIM of 0.95 (0.01), and LPIPS of 0.09 (0.04). Neural field reconstruction enabled enhanced visualization of micro-anatomical structures through improved spatial resolution and interpolation of intermediate views not present in the original acquisition. These findings demonstrate that neural fields provide a clinically viable approach for volumetric MRI super-resolution and novel view synthesis, particularly valuable for addressing anisotropic acquisition limitations in neurosurgical planning.


(Читать комментарии) (Добавить комментарий)