|
| |||
|
|
игры втроем Допустим, конечная игра без случайностей и с полной информацией, но играют трое. Ходят по очереди, по кругу. Проигрывает тот, кто не может сделать ход; он получает -1. Последний сходивший получает +1, а остальной - 0. Забавный факт: в этой игре тоже однозначно определен победитель, и у него есть выигрышная стратегия. Очень неожиданно и противно интуиции: то есть, двое других, даже проанализировав дерево игры и сговорившись играть "на лапу", его все равно посадить не смогут. Это известно? Или это неверно? Если неверно, то я вывешу доказательство, очень простое. Ошибок в нем не вижу, но интуиция сопротивляется. Может, все же ошибся? :) UPD Ура, нашли ошибку! |
|||||||||||||