| 
     
    
 | 
  
 
Disentangling acute motor deficits and adaptive responses evoked by the loss of cerebellar output 
 
Cerebellar patients exhibit a broad range of impairments when performing voluntary movements. However, the sequence of events leading to these deficits and the distinction between primary and compensatory processes remain unclear. We addressed this question by reversibly blocking cerebellar outflow in monkeys performing a planar reaching task. We found that the reduced hand velocity observed under cerebellar block is driven by a combination of a general decrease in muscle torque and a spatially tuned reduction in velocity, particularly pronounced in movements involving inter-joint interactions. The time course of these two processes was examined using repeated movements to the same target under cerebellar block. We found that the reduced velocity was driven by an acute onset of weakness superimposed on a gradually emergent strategy aimed to minimize passive inter-joint interactions. Finally, although the reduced velocity affected movements to all targets, it could not explain the enhanced motor noise observed under cerebellar block, which manifested as decomposed and variable trajectories. Our results suggest that cerebellar deficits lead to motor impairments through a loss of muscle strength and altered motor control strategy to compensate for the impaired control of limb dynamics. However, the loss of feedforward control also leads to increased motor noise, which cannot be strategically eliminated. 
 
 (Читать комментарии) (Добавить комментарий) 
 | 
  |