karaul's Journal
 
[Most Recent Entries] [Calendar View] [Friends View]

Saturday, May 6th, 2006

    Time Event
    2:30p
    Кинематическая теория объединения взаимодействий
    Спираль движения объекта м.б. рассмотрена на разных масштабах. Ось спирали может изгибаться и образовывать витки более крупной спирали, которая в свою очередь будет иметь свою собственную ось. Теперь допустим что ось спирали отвечает за волновое движение, а витки спирали за корпускулярное движение. Тогда, на выделенном масштабе, получаем объекты взаимодействия (витки спирали), и поле взаимодействия (созданное осью спирали). Т.о. разные пространственно временные масштабы имеют своё собсвенное взаимойдейсвие, что соответсвует действительности. Взаимодействие между двумя объектами представляется как соразмерность искривления их траекторий движения.

    ОТО утверждает что свет распространяется вдоль мировых линий, линий минимальной кривизны пространства минковского. Это, очевидно, максимальный масштаб искривления траектории. Минимальный масштаб (если верная кварковая теория) реализуется в атомных частицах.

    при этом надо учитывать (раз никуда не деться от спина, 5ая ось) вращение в многомерном мире. А величина спина кратно постоянной планка, это есть квант вращения
    4:30p
    COMPLEX NUMBERS IN QUANTUM MECHANICS
    http://modelingnts.la.asu.edu/pdf/Spin&uncert.pdf

    VII. COMPLEX NUMBERS IN QUANTUM MECHANICS
    The prominent role of complex numbers in quantum mechanics is usually taken for
    granted and justiØed by its implications. I would like to call attention to an important
    fact which shows that a deeper analysis is possible with potentially important physical
    implications. That fact is that the unit imaginary in the Schroedinger wave function is
    the generator of rotations about the axis of spin. (See the Appendix for a mathematical
    formulation.)
    Let us be clear about the ontological status of this purported fact. It is not an interpretation
    arbitrarily imposed on the Schrƒodinger wave function by external considerations as
    is the case with wave-particle duality. Rather it comes from requiring that quantum mechanics
    be internally consistent, speciØcally, that the interpretation as well as the equations
    of Schrƒodinger theory be derived from the Dirac theory.28
    The consistency argument establishes the relation of spin to the unit imaginary in the
    Schrƒodinger wave function for electrons but not for pions, which are also commonly described
    by complex wave functions. Therefore, some new facts and ideas will be required to
    extend what has been established in electron theory to a coherent physical interpretation
    of all complex wave functions in quantum theory. By way of suggestion, let us speculate
    brie°y on some possibilities.
    Two facts of general signiØcance are available to guide our speculations: First, as already
    mentioned, the unit imaginary in the electron wave function has a deØnite geometrical
    interpretation by virtue of its relation to spin. Second, distinct wave functions in quantum
    mechanics are related by the group structure of elementary particle theory. By combining
    these facts in a unique model, we may be able to establish a geometrical interpretation in
    spacetime of all wave functions and dynamical transformation groups relating them. This
    is obviously a tall order, so the best that can be done here is to give some hint as to how
    one might try to fulØll it.
    8:07p
    Maxwell's Equations
    http://arxiv.org/abs/hep-th/9211062

    Clifford Algebra Derivation of the Characteristic Hypersurfaces of Maxwell's Equations
    Authors: William M. Pezzaglia
    Comments: 6 pages
    Report-no: SFSU-Th-92-05

    An alternative, pedagogically simpler derivation of the allowed physical wave fronts of a propagating electromagnetic signal is presented using geometric algebra. Maxwell's equations can be expressed in a single multivector equation using 3D Clifford algebra (isomorphic to Pauli algebra spinorial formulation of electromagnetism). Subsequently one can more easily solve for the time evolution of both the electric and magnetic field simultaneously in terms of the fields evaluated only on a 3D hypersurface. The form of the special "characteristic" surfaces for which the time derivative of the fields can be singular are quickly deduced with little effort.

    << Previous Day 2006/05/06
    [Calendar]
    Next Day >>

About LJ.Rossia.org