Лёня Посицельский's Journal
 
[Most Recent Entries] [Calendar View]

Monday, February 18th, 2013

    Time Event
    4:17p
    Задача про копроизводную категорию
    В контексте экстраординарного обратного образа квазикогерентных пучков при плоском морфизме возник вопрос. Пусть имеется модуль M над кольцом R. Как можно убедиться, что конус морфизма из левой проективной резольвенты M в M не является коацикличным комплексом R-модулей?

    Конкретно, пусть R -- конечномерная коммутативная алгебра над полем k, и пусть M = R* -- дуализирующий инъективный модуль. Коациклична ли проективная резольвента M (рассматриваемая вместе с самим M, как ацикличный комплекс)?

    Для нетерова кольца R, коацикличность комплекса R-модулей С эквивалентна гомотопности нулю всякого морфизма из него в комплекс инъективных R-модулей J. Если комплекс C ацикличен, можно заменить J на конус морфизма из него в его гомотопически инъективную резольвенту, что позволяет считать J ацикличным тоже. Всякий морфизм из ограниченного сверху комплекса проективных модулей в ацикличный комплекс гомотопен нулю. Вопрос, таким образом, упирается в гомотопность нулю произвольных морфизмов комплексов M → J.

    Откуда вообще берутся неограниченные ацикличные комплексы инъективных объектов? Чтобы получить такой комплекс, нужно иметь R-модуль, допускающий левую инъективную резольвенту, что неочевидно. Я привык рассматривать пример фробениусовой алгебры R, но к этой задаче он не подходит.

    R-модуль K называется горенштейново инъективным (ср. предыдущий математический постинг, ага), если он является модулем коциклов в неограниченном ацикличном комплексе инъективных модулей, сохраняющем ацикличность при применении функтора Hom из любого инъективного R-модуля. Интересующий нас контрпример был бы связан с существованием R-модуля, допускающего инъективную левую резольвенту, но не являющегося горенштейново инъективным. Откуда брать такие модули?
    5:00p
    Задача про копроизводную категорию - 2
    Рассмотрим следующий конкретный пример. Пусть R -- факторкольцо кольца многочленов k[x,y] по соотношениям тривиальности всех умножений: x2 = xy = y2 = 0 (т.е., базис в R образуют элементы 1, x, y). Тогда ядром сюръективного отображения из свободного R-модуля с двумя образующими R ⊕ R в инъективный R-модуль R*, переводящего образующие в вектора x* и y*, является прямая сумма трех копий тривиального R-модуля k.

    Поэтому если комплекс HomR(R*,J) в какой-то ацикличный комплекс инъективных R-модулей J ацикличен, то ацикличен и комплекс HomR(k,J). В последнем случае, очевидно, комплекс J стягиваем. Поэтому, чтобы убедиться, что проективная резольвента R* (рассматриваемая как ацикличный комплекс) не коациклична, достаточно продемонстрировать пример нестягиваемого ацикличного комплекса инъективных R-модулей.

    Но если бы такого комплекса не существовало, то копроизводная категория R-модулей совпадала бы с производной категорией, и соответственно совпадали бы их подкатегории компактных объектов, т.е., всякий конечный комплекс конечномерных R-модулей был бы совершенным комплексом. Поскольку локальное кольцо R не регулярно, этого быть не может.

    Заметим, что никакого конкретного нестягиваемого ацикличного комплекса инъективных R-модулей мы так и не предъявили...

    << Previous Day 2013/02/18
    [Calendar]
    Next Day >>

Лёня Посицельский   About LJ.Rossia.org