Лёня Посицельский's Journal
[Most Recent Entries]
[Calendar View]
Monday, March 4th, 2013
Time |
Event |
12:40a |
Задача Барра-Бека для точной категории контрамодулей кокручения Известны следующие утверждения, являющиеся частным случаем теоремы Барра-Бека для консервативных точных функторов между абелевыми категориями:
Теорема 1. Пусть C -- кокольцо над ассоциативным кольцом A, являющееся плоским правым A-модулем. Пусть A → B -- гомоморфизм ассоциативных колец, превращающий B в строго плоский правый A-модуль. Тогда абелевы категории левых комодулей над кокольцами C над A и B⊗AC⊗AB над B эквивалентны; функтор тензорного умножения на B над A задает эту эквивалентность.
Теорема 2. Пусть C -- кокольцо над ассоциативным кольцом A, являющееся проективным левым A-модулем. Пусть A → B -- гомоморфизм ассоциативных колец, превращающий B в строго проективный левый A-модуль (в смысле, проективную образующую категории левых A-модулей). Тогда абелевы категории левых контрамодулей над кокольцами C над A и B⊗AC⊗AB над B эквивалентны; функтор Hom из B над A задает эту эквивалентность.
Хотелось бы доказать следующий вариант:
Теорема 3. Пусть C -- кокольцо над ассоциативным кольцом A, являющееся плоским левым A-модулем. Пусть A → B -- гомоморфизм ассоциативных колец, превращающий B в строго плоский левый A-модуль. Тогда контрапроизводные категории точных категорий левых контрамодулей A-кокручения над кокольцом C над A и левых контрамодулей B-кокручения над кокольцом B⊗AC⊗AB над B эквивалентны. Функтор Hom из B над A задает эту эквивалентность; в частности, как функтор между точными категориями контрамодулей кокручения он является вполне строгим.
Идея предполагаемого доказательства теоремы 3: понятно, что обычную теорему Барра-Бека здесь не применишь, но можно рассуждать так. В первых двух перечисленных случаях, обсуждаемый функтор "замены кольца" имеет сопряженный функтор "замены кокольца" (определенный в большей общности произвольного морфизма коколец, согласованного с морфизмом из базовых колец).
В третьем случае, хотелось бы иметь частично определенный сопряженный функтор на точных категориях контрамодулей кокручения, индуцирующий всюду определенный сопряженный функтор на триангулированных категориях. Для этого нам понадобится техническая теорема о резольвентах, про которую будет следующий постинг. | 12:57a |
Еще одна версия любимой теоремы о полной строгости В духе предложения 1.5 из 1102.0261 и далее -- их уже много по нынешним временам -- следствий A.2.1(b-c)/А.5.2 из 1209.2995 и др. -- нельзя ли доказать следующие утверждения?
Теорема 1. Пусть C -- кокольцо над ассоциативным кольцом A; предположим, что C является плоским правым A-модулем. Тогда копроизводная категория абелевой категории левых C-комодулей эквивалентна факторкатегории гомотопической категории комплексов коиндуцированных левых C-комодулей по ее минимальной триангулированной категории, содержащей тотализации точных троек комплексов C-комодулей, почленно коиндуцированных с точных троек A-модулей, и замкнутой относительно бесконечных прямых сумм.
Теорема 2. Пусть C -- кокольцо над ассоциативным кольцом A; предположим, что C является проективным левым A-модулем. Тогда контрапроизводная категория абелевой категории левых C-контрамодулей эквивалентна факторкатегории гомотопической категории комплексов индуцированных левых C-контрамодулей по ее минимальной триангулированной категории, содержащей тотализации точных троек комплексов C-контрамодулей, почленно индуцированных с точных троек A-модулей, и замкнутой относительно бесконечных произведений.
Теорема 3. Пусть C -- кокольцо над ассоциативным кольцом A; предположим, что C является плоским левым A-модулем. Тогда контрапроизводная категория точной категории левых C-контрамодулей A-кокручения эквивалентна факторкатегории гомотопической категории комплексов левых C-контрамодулей, (почленно) индуцированых с А-модулей кокручения, по ее минимальной триангулированной категории, содержащей тотализации точных троек комплексов C-контрамодулей, почленно индуцированных с точных троек A-модулей кокручения, и замкнутой относительно бесконечных произведений.
Во всех трех случаях, сравнительно несложно показать, что естественный функтор (индуцированный вложением гомотопических категорий) является функтором локализации по Вердье. Трудность в проверке полной строгости (или, хотя бы, консервативности). На этот предмет и используется длинное рассуждение из 1102.0261.
Будет ли оно работать в этой ситуации, где индуцированные контрамодули (или коиндуцированные комодули) не образуют даже точной категории? |
|