MGM-двойственность и ко-контра соответствие - 6 Продолжение серии постингов
http://posic.livejournal.com/1100719.htmlПеречисленные примеры ясно указывают на следующие элементарные случаи, комбинированием которых составляются более сложные возникающие в этих примерах ситуации:
- для построения эквивалентности между D(A-mod) и D(A-mod), для модулей над кольцом A, достаточно тождественного функтора, что означает использование самого кольца A в роли ядра в паре сопряженных функторов тензорного произведения и гомоморфизмов
- для построения эквивалентности между D
co(C-comod) и D
ctr(C-contra), для комодулей и контрамодулей над коалгеброй C над полем k (или кокольцом C над кольцом A конечной гомологической размерности), нужно использовать саму коалгебру/кокольцо C в роли ядра в паре сопряженных функторов контратензорного произведения и комодульных гомоморфизмов
- для построения эквивалентности между D
co(A-mod) и D
ctr(B-mod), для модулей над (нетеровыми некоммутативными) кольцами A и B, нужно использовать дуализирующий комплекс для пары колец (A,B) в роли ядра в паре сопряженных функторов тензорного произведения и гомоморфизмов
Это все давно известно, а неизвестным остается
- Как построить эквивалентность между D(C-comod) и D(D-contra), для пары некокоммутативных коалгебр C и D (скажем) над полем k, или даже эквивалентность между D(C-comod) и D(C-contra) для одной кокоммутативной коалгебры C над k?
(Окончание следует.)