Комодули и контрамодули - 2 Пусть C -- коассоциативное, коунитальное кокольцо над ассоциативным кольцом A, являющееся проективным левым A-модулем. Рассмотрим три категории:
(i) категория правых C-комодулей comod-C;
(ii) категория дискретных правых модулей discr-R над топологическим ассоциативным кольцом R = Hom
C(C,C)
op (кольцо эндоморфизмов левого C-комодуля C с топологией, описанной в постинге
http://posic.livejournal.com/1287429.html и далее по ссылкам);
(iii) категория Rex(C-contra) всех функторов из категории левых C-контрамодулей С-contra в категорию абелевых групп Ab, сохраняющих копределы.
Утверждается, что три категории (i)-(iii) естественным образом эквивалентны. Естественные функторы между ними образуют круговую диаграмму:
(i) → (ii): чтобы определить структуру правого R-модуля на правом C-комодуле N, нужно использовать изоморфизм N □
C C = N. Ввиду этого изоморфизма, ясно, что эндоморфизмы левого C-комодуля C действуют слева на N. Поскольку образ каждого элемента из N в N □
C C ⊂ N ⊗
A C выражается в виде тензора, в который входит только конечное число элементов из C, это действие дискретно.
(ii) → (iii): категория C-contra отождествляется с категорией R-contra, как по ссылке (достаточно отождествить категории проективных объектов, для чего достаточно отождествить монады на категории множеств), после чего дискретному правому R-контрамодулю N сопоставляется функтор контратензорного произведения левых R-контрамодулей с ним N ⊙
R −.
(iii) → (i): пусть F: C-contra → Ab -- функтор, сохраняющий копределы. Тогда F(Hom
C(C,C)) ⊗
A C = F(Hom
C(C, C⊗
AC)), поскольку ко-контра соответствие Hom
C(C,−) переводит прямые суммы копроективных C-комодулей в прямые суммы проективных C-контрамодулей. Теперь морфизм коумножения C → С ⊗
A C индуцирует искомое отображение C-кодействия N → N ⊗
A C на правом A-модуле N = F(Hom
C(C,C)).
Пусть теперь S -- полуассоцитивная, полуунитальная полуалгебра над кокольцом C, являющаяся копроективным левым C-комодулем. Тогда аналогичные три категории тоже эквивалентны между собой:
(i) категория правых S-полумодулей simod-S;
(ii) категория дискретных правых модулей discr-R над топологическим ассоциативным кольцом R = Hom
S(S,S)
op (кольцо эндоморфизмов левого S-полумодуля S с топологией, описанной по ссылке выше);
(iii) категория Rex(S-sicntr) всех функторов из категории левых S-полуконтрамодулей S-sicntr в категорию абелевых групп, сохраняющих копределы.
Круговая диаграмма функторов между ними строится так же, как выше; выпишем подробнее только первую и третью (самую интересную) конструкцию:
(i) → (ii): чтобы определить структуру правого R-модуля на правом S-полумодуле N, нужно использовать изоморфизм N ◊
S S = N. Ввиду этого изоморфизма, ясно, что эндоморфизмы левого S-полумодуля S действуют слева на N.
Чтобы убедиться, что это действие дискретно, достаточно заметить, что (эндоморфизмы левого S-полумодуля определяются своими ограничениями на C, а) действие эндоморфизма S на конкретном элементе n из N определяется его действием на образах при отображении полуединицы в S тех элементов из C, которые входят в какое-нибудь выражение для тензора в N ⊗
A C, являющегося образом элемента n при отображении правого C-кодействия.
(iii) → (i): пусть G: S-sicntr → Ab -- функтор, сохраняющий копределы. Компонуя ко-контра/полуко-полуконтра соответствие с функтором индуцирования полупроективных левых S-полумодулей с копроективных левых C-комодулей, получаем функтор из категории проективных левых C-контрамодулей в категорию проективных левых S-полуконтрамодулей, сохраняющий бесконечные прямые суммы и переводящий Hom
C(C,C) в Hom
S(S,S). Функтор этот можно однозначно продолжить до сохраняющего копределы функтора C-contra → S-sicntr. Компонуя полученный функтор с функтором G, получаем сохраняющий копределы функтор F: C-contra → Ab и связанный с ним правый C-комодуль N.
Теперь абелева группа/правый A-модуль N = G(Hom
S(S,S)) = F(Hom
C(C,C)) оказывается правым C-комодулем. Далее, имеем G(Hom
S(S,S)) □
C S = G(Hom
S(S, S□
CS)), поскольку полуко-полуконтра соответствие Hom
S(S,−) переводит прямые суммы полупроективных S-полумодулей в прямые суммы проективных S-полуконтрамодулей. Наконец, морфизм полуумножения S □
C S → S индуцирует искомое отображение S-полудействия N □
C S → N.