Гугл-оповещения прислали ссылочку на обзор по банаховым пространствам, упоминающий статью моего папы --
https://arxiv.org/abs/1906.04168"Question: Given a Banach space X, does there exist a Lipschitz (uniformly continuous) selector?
Answer: Yes, if X is finite dimensional.
Conjecture: The above statement also holds for all infinite dimensional Banach space X!
However, the question was settled in the negative by Positselskii [11] in 1971 and independently (for the uniformly continuous case) by Przeslawskii and Yost [12] in 1989."
[11] E. Positselski, Lipschitz maps in the space of convex bodies, Optimisation 4(21), (1971), 83-90.
Аффилиация автора обзора: Department of Mathematics, University of Kashmir, Srinagar, India.