Полупроизводная категория для неаффинного квазикомпактного плоского морфизма В развитие постинга
https://posic.livejournal.com/2336338.htmlПолупроизводная категория -- это смесь производной категории по части переменных (условно, "образующих алгебру") и копроизводной категории по остальным ("образующим коалгебру"). Полупроизводная категория -- это центральное техническое, гомологическое понятие во всяких полубесконечных делах. В этом главное открытие моей книжки по полубесконечной гомологической алгебре.
В контексте алгебраической геометрии, "переменные алгебры" означают пространство, сложно склеенное из маленьких аффинных схем -- скажем, инд-нетерову инд-схему или инд-нетеров инд-стэк. "Переменные коалгебры" означают пространство, просто склеенное из больших аффинных схем -- скажем, бесконечномерную квазикомпактную полуотделимую схему.
Обычно конструкция полупроизводной категории подразумевает относительную ситуацию -- морфизм колец или пространств, "забывающий переменные алгебры". В этом случае понятно, как полупроизводная категория определяется. Бывают и более сложные конструкции, как например в мемуаре про слабо искривленные A-бесконечность алгебры.
Оставляя пока в стороне D-модули, стоит обсудить определение полупроизводной категории в контексте полубесконечной алгебраической геометрии квазикогерентных пучков кручения, как в моем пишущемся сейчас (апрельском 2021 года) препринте. Самое ограничительное из условий, при которых там развивается теория -- это аффинность морфизма инд-схем π:
Y → X. Хотелось бы заменить аффинность на квазикомпактность и полуотделимость (понимаемую в том смысле, что прообраз любой аффинной локально замкнутой подсхемы в Х -- квазикомпактная полуотделимая локально замкнутая подсхема в
Y).
Аффинность эта нужна для того, чтобы определять полупроизводную категорию в терминах функтора прямого образа квазикогерентных пучков кручения при морфизме инд-схем
Y → X. Чтобы прямой образ был точным и строгим функтором, морфизм должен быть аффинным. На этой почве я еще в каком-то 2013 году размышлял о важности аффинных морфизмов в полубесконечной алгебраической геометрии.
Теперь же мне кажется, что аффинность можно ослабить до квазикомпактности и полуотделимости, хотя и ценой существенного усложнения определения. Пусть π:
Y → X -- квазикомпактный, полуотделимый, плоский морфизм инд-схем (при этом X предполагается инд-нетеровой инд-схемой). Что значит, что комплекс квазикогерентных пучков кручения
N на
Y полуацикличен относительно X?