Мотивы Артина-Тейта с конечными коэффициентами. План I. Присоединенная градуированная категория
1. Конструкция прис. град. кат-ии [как локализации-факторизации категории бифильтрованных объектов] [а бифильтрованные объекты в терминах фильтрованных объектов суть просто диаграммы U <- V <- U(-1) <- V(-1), такие что последовательность присоединенных факторов расщепимо точна]
2. Структура точной категории на п.г.к. [та же техника расслоенных (ко)произведений, что в предыдущем пункте]
3. Конструкция дифференциала в точной последовательности [Ext
G*(gr-,gr-) как левый или правый модуль над Ext
F*(-,-) индуцирован с Hom
G(gr-,gr-) как модуля над Hom
F(-,-)]
4. Проверка точности этой последовательности [достаточно проверять фрагмент, составленный из Ext
0 и Ext
1]
II. Кошулевость для градуированной категории
1. Квадратичность диагональных Ext'ов
2. Конструкция точной категории по диагональным Ext'ам
3. Конструкция спуска базы
4. Общий (абсолютный) случай
5. Плоский случай
III. Триангулированный функтор реализации и категории фильтрованных объектов [вспомнить]
IV. Что значит все же эта кошулевость для простого циклического расширения полей? Что значит в этом случае квадратичность, хотя бы? Или порожденность первой компонентой? [В одну сторону, там должна вытекать теорема Гильберта 90 для милноровских K-групп как по модулю l, так и с целыми коэффициентами (хоть эти Гильберты-90 и выглядят по-разному -- потому что для K
1 они выглядят по-разному), как мне помнится. В другую сторону, нужно рассмотреть интересующую алгебру как модуль над милноровской алгеброй базового поля по модулю l, так ее кошулевость и будет вытекать из знакомых гипотез.]
См. также
http://posic.livejournal.com/359900.html (подзамок)
+ Если E -- точная категория и F -- точная категория фильтрованных объектов из E с точными тройками, расщепимыми на присоединенных факторах по фильтрации, то Ext'ы в F между сдвигами объектов из Е, рассматриваемых как сосредоточенные в каком-то одном куске фильтрации, описываются формулами, как в гипотезе Б.-Л. Другими словами, "большое кольцо" Ext'ов между всеми объектами любой (малой) точной категории кошулево.