posic's Journal
[Most Recent Entries]
[Calendar View]
[Friends View]
Sunday, December 19th, 2010
Time |
Event |
5:08a |
Алгебраические дериваторы: постановка задачи Пусть k -- коммутативное кольцо и C -- k-линейная DG-категория. Предположим, что для каждой k-линейной DG-категории D с гомотопически k-плоскими комплексами морфизмов нам дана производная категория DG-модулей над D⊗kC, совершенных вдоль по C для каждого фиксированного объекта из D, рассматриваемая как k-линейная аддитивная категория с функтором сдвига. Предположим далее, что для каждого k-линейного DG-функтора D' → D'' между DG-категориями D как выше задан индуцированный функтор между производными категориями DG-модулей как выше (тот или те из них, которые всегда имеются -- это нужно посмотреть). Можно ли по этим данным восстановить класс DG-эквивалентности k-линейной DG-категории C?
Вполне возможно, что ответ на этот вопрос несложен или известен, я просто ничего про это не знаю, кроме того, что подобного рода вопрос всегда казался мне естественной отправной точкой. | 8:55p |
Глупые фильтрации и сопряженные функторы Решение упражнения, сформулированного в http://posic.livejournal.com/517640.htmlПусть C и D -- триангулированные категории, F и G -- пара сопряженных функторов между C и D, и пусть M и N -- полные подкатегории в C и D, замкнутые относительно расширений и переводимые функторами F и G одна в другую. Предположим, что всякий объект из N является итерированным расширением прямых слагаемых объектов, приходящих из M. Тогда если всякий морфизм степени >1 в C между объектами из M разлагается в композицию морфизмов положительной степени между объектами из M, то то же верно для морфизмов между объектами из N в D. В самом деле, достаточно проверять разложимость для морфизмов степени >1 в D между объектами из N, один из концов которых приходит из M (в силу условия и известного общего результата об условиях разложимости высших морфизмов), а это следует из сопряженности и разложимости в C. |
|