posic's Journal
 
[Most Recent Entries] [Calendar View] [Friends View]

Sunday, December 26th, 2010

    Time Event
    2:58a
    Плохие эвристики (преподавание математики)
    http://mathoverflow.net/questions/2358/most-harmful-heuristic/
    7:41p
    Числа, многочлены, теория моделей
    Есть известный тезис, что целые числа похожи на многочлены от одной переменной с коэффициентами в поле, особенно если "поле" пробегает все конечные поля. Можно ли как-нибудь формализовать этот тезис в рамках математической логики?

    Я могу рассмотреть язык теории колец, т.е. один сорт переменных "элементы кольца", бинарные операции "сложение", "вычитание", "умножение", константы "ноль" и "единица". Рассмотреть в этом языке все формулы, истинные во всех кольцах k[x], где k -- (конечное) поле. И задаться вопросом, истинны ли все такие формулы в кольце Z.

    Проблема в том, что ответ очевидно отрицательный. Глупейшее утверждение "или 1+1=0, или 1+1+1=0, или существуют три попарно различных обратимых элемента" выполнено во всех кольцах k[x], но не в Z.

    Можно ли как-то разумно ограничить класс рассматриваемых формул, так чтобы любая формула из этого класса, истинная во всех k[x], была истинна в Z, и при этом класс формул был достаточно богатым, чтобы включать всякие содержательные алгебраические утверждения?
    11:45p
    Целые алгебраические числа и теория моделей
    Юзер misha2 убедил меня в комментариях к предыдущему постингу, что поставленная в нем задача вряд ли разрешима, но я не хочу сдаваться и сделаю следующую попытку.

    Как известно, все алгебраически замкнутые поля фиксированной характеристики элементарно эквивалентны, т.е. если какая-то формула в языке теории колец истинна в одном из них, то она истинна и в остальных. Если какая-то формула истинна в алгебраически замкнутых полях всех простых характеристик, то она истинна и в алгебраически замкнутых полях характеристики нуль.

    Нельзя ли распространить эти результаты на кольца, не имеющие целых алгебраических расширений? Допустим, некоторая формула в языке теории колец истинна во всех коммутативных алгебрах над полями, содержащих корни всех многочленов от одной переменной со старшим коэффициентом 1 (для моих целей, я готов предположить, что она истинна во всех вообще коммутативных алгебрах над полями). Следует ли из этого, что она истинна в кольце всех целых алгебраических чисел?

    P.S. http://www.math.uga.edu/~rr/ArithAllAlgInt.pdf

    P.P.S. В частности, по ссылке выше автор отмечает, что (2x-1)(3x-1) = 0 разрешимо в любом поле, но не в кольце целых алгебраических чисел. Так что ответ на мой вопрос отрицательный. Но по ссылке есть и некоторый положительный результат.

    << Previous Day 2010/12/26
    [Calendar]
    Next Day >>

My Website   About LJ.Rossia.org