Желал читать "Апологию математики" Успенского. Когда оно вышло бы в интернет. Прочёл части по нижеследующим линкам. Передумал - не воодушевило. Ниже некоторые цитаты.
http://www.ozon.ru/context/detail/id/4612107/ Содержание
http://www.afisha.ru/book/1543/review/286302/ Рецензия
http://elementy.ru/bookclub/book/307/ Аннотация
http://magazines.russ.ru/novyi_mi/2007/11/us10.html Первая часть
http://elementy.ru/lib/430915 Глава 8
Итак, мы отстаиваем два тезиса. Первый, что математика — вне зависимости от её практического использования — принадлежит духовной культуре. Второй, что отдельные фрагменты математики входят в общеобязательную часть этой культуры.
Сейчас едва ли кто-либо строит прямой угол указанным способом: этот способ переместился из мира практики в мир идей — как и вообще многие воспоминания о материальной культуре прошлого вошли в духовную культуру настоящего.
Эратосфен, измерял сухопутные расстояния по скорости и времени движения торговых караванов. Можно предполагать, что именно так Эратосфен измерил расстояние между Александрией и Сиеной, которая сейчас называется Асуаном (если смотреть по современной карте, получается примерно 850 км). Это расстояние было для него чрезвычайно важным. Дело в том, что Эратосфен считал эти два египетских города лежащими на одном и том же меридиане; хотя это в действительности не совсем так, но близко к истине. Найденное расстояние он принял за длину дуги меридиана. Соединив эту длину с наблюдением полуденных высот Солнца над горизонтом в Александрии и Сиене, он, далее, путём изящных геометрических рассуждений, вычислил длину всего меридиана, а тем самым и величину радиуса земного шара.
Неразрешимость квадратуры круга доказал в 1882 году немецкий математик Фердинанд Линдеман. Рассказывают, что он завершил доказательство 12 апреля, в день своего тридцатилетия, и, спрошенный друзьями, отчего это он сияет так, словно решил проблему квадратуры круга, отвечал, что так оно и есть. Жена Линдемана была недовольна, что муж удовлетворен той славой, которую заслуженно принесла ему задача о квадратуре круга, и заставляла его доказывать Великую теорему Ферма. Он страдал, но вынужден был подчиняться. Он скончался в 1939 году и, пока был в силах, занимался Проблемой Ферма. Результатом были слабые публикации на эту тему.
Само слово «алгоритм» достаточно интересно: это, возможно, единственный математический термин, имеющий в своей этимологии географическое название.
Свершившись, это признание произвело переворот не только в математике, но и в философии. Во-первых, была признана возможность развития гиперболической геометрии в качестве теории столь же содержательной и непротиворечивой, как и геометрия Евклида; и это развитие уже произошло. Во-вторых, признали теоретическую возможность того, что гиперболическая геометрия реализуется в окружающем нас физическом пространстве.
От зарождения геометрии прошли тысячелетия, пока люди осознали, что мы не можем непосредственно наблюдать точки, прямые, отрезки, плоскости, углы, шары и прочие геометрические объекты и потому предметом геометрии служит не реальный мир, а мир воображаемый, населённый этими идеальными геометрическими объектами, всего лишь похожий на мир реальный (по терминологии некоторых философских школ, являющийся отражением реального мира).