Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-06-29 02:17:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Impact of dendritic non-linearities on the computational capabilities of neurons
Multiple neurophysiological experiments have shown that dendritic non-linearities can have a strong influence on synaptic input integration. In this work we model a single neuron as a two-layer computational unit with non-overlapping sign-constrained synaptic weights and a biologically plausible form of dendritic non-linearity, which is analytically tractable using statistical physics methods. Using both analytical and numerical tools, we demonstrate several key computational advantages of non-linear dendritic integration with respect to models with linear synaptic integration. We find that the dendritic non-linearity concurrently enhances the number of possible learned input-output associations and the learning velocity, and we characterize how capacity and learning speed depend on the implemented non-linearity and the levels of dendritic and somatic inhibition. We find that experimentally observed connection probabilities naturally emerge in neurons with sign-constrained synapses as a consequence of non-linear dendritic integration, while in models with linear integration, an additional robustness parameter must be introduced in order to reproduce realistic connection probabilities. Non-linearly induced sparsity comes with a second central advantage for neuronal information processing, i.e. input and synaptic noise robustness. By testing our model on standard real-world benchmark datasets inspired by deep learning practice, we observe empirically that the non-linearity provides an enhancement in generalization performance, showing that it enables to capture more complex input/output relations.


(Читать комментарии) (Добавить комментарий)