Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-07-21 10:51:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Hierarchical Bayesian modeling of multi-region brain cell count data
We can now collect cell-count data across whole animal brains quantifying recent neuronal activity, gene expression, or anatomical connectivity. This is a powerful approach since it is a multi-region measurement, but because the imaging is done post-mortem, each animal only provides one set of counts. Experiments are expensive and since cells are counted by imaging and aligning a large number of brain sections, they are time-intensive. The resulting datasets tend to be under-sampled with fewer animals than brain regions. As a consequence, these data are a challenge for traditional statistical approaches. We demonstrate that hierarchical Bayesian methods are well suited to these data by presenting a 'standard' partially-pooled Bayesian model for multi-region cell-count data and applying it to two example datasets. For both datasets the Bayesian model outperformed standard parallel t-tests. Overall, the Bayesian approach's ability to capture nested data and its rigorous handling of uncertainty in under-sampled data can substantially improve inference for cell-count data.


(Читать комментарии) (Добавить комментарий)