Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-11-15 07:04:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Sulfatide deficiency-induced astrogliosis and myelin lipid dyshomeostasis are independent of Trem2-mediated microglial activation
Disrupted lipid homeostasis and neuroinflammation often co-exist in neurodegenerative disorders including Alzheimers disease (AD). However, the intrinsic connection and causal relationship between these deficits remain elusive. Our previous studies show that the loss of sulfatide (ST), a class of myelin-enriched lipids, causes AD-like neuroinflammatory responses, cognitive impairment, bladder enlargement, as well as lipid dyshomeostasis. To better understand the relationship between neuroinflammation and lipid disruption induced by ST deficiency, we established a ST-deficient mouse model with constitutive Trem2 knockout and studied the impact of Trem2 in regulating ST deficiency-induced microglia-mediated neuroinflammation, astrocyte activation and lipid disruption. Our study demonstrates that Trem2 regulates ST deficiency-induced microglia-mediated neuroinflammatory pathways and astrogliosis at the transcriptomic level, but not astrocyte activation at the protein level, suggesting that Trem2 is indispensable for ST deficiency-induced microglia-mediated neuroinflammation but not astrogliosis. Meanwhile, ST loss-induced lipidome disruption and free water retention were consistently observed in the absence of Trem2. Collectively, these results emphasize the essential role of Trem2 in mediating lipid loss-associated microglia-mediated neuroinflammation, but not both astrogliosis and myelin lipid disruption. Moreover, we demonstrated that attenuating neuroinflammation has a limited impact on brain ST loss-induced lipidome alteration or AD-like peripheral disorders. Our findings suggest that preserving lipidome and astrocyte balance may be crucial in decelerating the progression of AD.


(Читать комментарии) (Добавить комментарий)