Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-12-10 20:45:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Tactile stimulations reduce or promote the segregation of auditory streams: psychophysics and modelling
Auditory stream segregation plays a crucial role in understanding the auditory scene. This study investigates the role of tactile stimulation in auditory stream segregation through psychophysics experiments and a computational model of audio-tactile interactions. We examine how tactile pulses, synchronized with specific tones in a sequence of interleaved high- and low-frequency tones (ABA- triplets), influence the likelihood of perceiving integrated or segregated auditory streams. Our findings reveal that tactile pulses synchronized with specific tones enhance perceptual segregation, while pulses synchronized with both tones promote integration. Based on these findings, we developed a dynamical model that captures interactions between auditory and tactile neural circuits, including recurrent excitation, mutual inhibition, adaptation, and noise. The proposed model shows excellent agreement with the experiment. Model predictions are validated through psychophysics experiments. In the model, we assume that selective tactile stimulation dynamically modulates the tonotopic organization within the auditory cortex. This modulation facilitates segregation by reinforcing specific tonotopic responses through single-tone synchronization while smoothing neural activity patterns with dual-tone alignment to promote integration. The model offers a robust computational framework for exploring cross-modal effects on stream segregation and predicts neural behaviour under varying tactile conditions. Our findings imply that cross-modal synchronization, with carefully timed tactile cues, could improve auditory perception with potential applications in auditory assistive technologies aimed at enhancing speech recognition in noisy settings.


(Читать комментарии) (Добавить комментарий)