Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-02-04 05:08:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Inhibition of adenylyl cyclase 1 (AC1) and exchange protein directly activated by cAMP (EPAC) restores ATP-sensitive potassium (KATP) channel activity after chronic opioid exposure
Prolonged exposure to Gi/o receptor agonists such as opioids can lead to a sensitization of adenylyl cyclases (ACs), resulting in heterologous sensitization or cyclic AMP (cAMP) overshoot. The molecular consequences of cAMP overshoot are not well understood, but this adaptive response is suggested to play a critical role in the development of opioid tolerance and withdrawal. We found that genetic reduction of AC1 and simultaneous upregulation of ATP-sensitive potassium (KATP) channel subunits, SUR1 or Kir6.2, significantly attenuated morphine tolerance and reduced naloxone-precipitated withdrawal. In vitro models utilized an EPAC2-GFP-cAMP biosensor to investigate sensitization of adenylyl cyclase in SH-SY5Y neuroblastoma cells and HEK{Delta}AC3/6 knockout cells. Acute application of DAMGO significantly decreased the cAMP signal from the EPAC2-GFP-cAMP biosensor, while chronic DAMGO administration resulted in enhanced cAMP production following AC stimulation. Inhibition of cAMP overshoot was observed with naloxone (NAL), pertussis toxin (PTX), and the neddylation inhibitor, MLN4924 (Pevonedistat), as well as co-expression of {beta}-adrenergic receptor kinase C-terminus ({beta}ARK-CT). After establishment of the AC1-EPAC sensitization in the in vitro models, we found that inhibition of AC1 or EPAC enhanced potassium channel activity after chronic morphine treatment, using a thallium-based assay in SH-SY5Y cells. Similar data were obtained in mouse dorsal root ganglia (DRG) after chronic morphine treatment. This study presents evidence for investigating further AC1 signaling as a target for opioid tolerance and withdrawal, by increasing EPAC activity and affecting potassium channels downstream of opioid receptors.

O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=150 SRC="FIGDIR/small/636278v1_ufig1.gif" ALT="Figure 1">
View larger version (44K):
org.highwire.dtl.DTLVardef@f949f0org.highwire.dtl.DTLVardef@653b73org.highwire.dtl.DTLVardef@21fb38org.highwire.dtl.DTLVardef@f4561f_HPS_FORMAT_FIGEXP M_FIG O_FLOATNOGraphical AbstractC_FLOATNO C_FIG


(Читать комментарии) (Добавить комментарий)