Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-02-11 01:48:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Self-supervised image restoration in coherent X-rayneuronal microscopy
Coherent X-ray microscopy is emerging as a transformative technology for neuronal imaging, with the potential to offer a scalable solution for reconstruction of neural circuits in millimeter sized tissue volumes. Specifically, X-ray holographic nanotomography (XNH) brings together outstanding capabilities in terms of contrast, spatial resolution and data acquisition speed. While recent XNH developments already enabled generating valuable datasets for neurosciences, a major challenge for reconstruction of neural circuits remained overcoming resolving power limits to distinguish smaller neurites and synapses in the reconstructed volumes. Here we present a self-supervised image restoration approach that improves simultaneously spatial resolution, contrast, and data acquisition speed. This enables revealing synapses with XNH, marking a major milestone in the quest for generating connectomes of full mammalian brains. We demonstrate that this method is effective for various types of neuronal tissues and acquisition schemes. We propose a scalable implementation compatible with multi-terabyte image volumes. Altogether, this work brings large scale X-ray nanotomography to a new precision level.


(Читать комментарии) (Добавить комментарий)